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Abstract The East Taiwan Ophiolite (ETO) occurs as blocks and thrust sheets associated with the
Lichi Mélange in the Coastal Range of eastern Taiwan. The blocks consist of serpentinized harzburgite,
serpentinite breccia, gabbro, dikes of dolerite and plagiogranite, pillow basalts, and red clay within a
mud‐ and serpentinite‐rich mélange matrix. New U‐Pb zircon dating of a pegmatite gabbro yields a
weighted mean age of 16.65 ± 0.20 Ma. This age is earlier than the North Luzon Arc but overlaps with the
late‐stage spreading of the South China Sea. ETO glassy basalt has low K2O, MgO and high CaO contents,
similar to MORB. REE and trace element patterns show both N‐MORB patterns with LREE depletion
and E‐MORB patterns with slight LREE enrichment. A few samples show slight depletion in Nb‐Ta and
Ti and enrichment in Rb, Ba, U and Sr, indicating a hint of subduction influence. Most ETO basalt plots
within the overlapping fields of N‐MORB and BABB on Ti‐V, Cr‐Y, Nb/Yb‐Th/Yb, and Hf/3‐Th‐Ta
discrimination diagrams. These geochemical compositions are emblematic of mid‐ocean ridge or back‐arc
lava, like South China Sea basalt. We interpret ETO basalt and gabbro as fragments of the subducted
South China Sea basement that were scrapped off and accreted to the Luzon forearc during the process of
subduction initiation along the Manila Trench. Blocks of mantle material in the mélange may
originate from the upper plate of the arc‐continent collision and were mixed with lower plate crustal
material in a subduction channel now represented by the Lichi Mélange.

1. Introduction

The South China Sea (SCS) is one of the largest marginal basins in the western Pacific, and it is located at the
junction of the Eurasia, Indian, Australian, and Pacific Plates. Details of the origin of the SCS and the evolu-
tion of the Manila Trench have been debated due to multiple plate interactions during the time it formed
(e.g., Briais et al., 1993; Chung et al., 1997; Sun et al., 2006, 2009, 2011; Tapponnier et al., 1982; Taylor &
Hayes, 1980, 1983; Zhou et al., 1995, 2002, 2008). Much of the SCS oceanic crust from Miocene has since
been subducted beneath the Manila Trench. The Taiwan orogeny is an arc‐continent collision where the
buoyant passive margin of Asia is underthrusting the Manila Trench and colliding with the Luzon Arc.
The buoyancy of the continental margin has uplifted the suture zone of the collision, which is expressed
as the Longitudinal Valley. During Miocene subduction to present arc‐continent collision, some oceanic
crust fragments were uplifted and are now exposed in the Coastal Range of SE Taiwan. These blocks pre-
served in the collision zone are likely part of an ophiolite. As remnants of oceanic lithosphere, ophiolite
should clue to the birth and evolution of the ocean basin from which they are derived (e.g., Coleman,
1971; Dewey & Bird, 1970; Dilek & Furnes, 2011, 2014; Moores, 1970). Fragments of unsubducted ocean
floor are preserved by ophiolite obduction. This process may include accretion of fragments of oceanic crust
scrapped off the subduction lower plate or complete sections of oceanic lithosphere in the forearc of the
upper plate accreted by arc‐continent collision (e.g., Dewey, 1976; Gealey, 1980; Harris, 1992; Lippard
et al., 1986; Moores, 1970; Searle & Stevens, 1984).

The East Taiwan Ophiolite (ETO) consists of fragments of various parts of an ophiolite sequence scattered
throughout the Lichi Mélange of the Coastal Range along the southeast part of the Longitudinal Valley. It
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plays a key role in reconstructing the tectonic evolution from subduction initiation of the South China
Sea along the Manila Trench to final closure during arc‐continent collision. Juan et al. (1953) first noticed
that glassy pillow basalt of the ETO and proposed the name taiwanite. Geological mapping of the
Coastal Range was later undertaken by Hsu (1956) who discovered exotic blocks of mafic and ultramafic
rocks. These blocks were later mapped in more detail and recognized by Hsu (1976) as ophiolites in
what is known as the Lichi Mélange. The origin and emplacement mechanism of the ETO is still
debated due mostly to its fragmented occurrence in the mélange and the lack of reliable age and geo-
chemical constraints.

The Lichi Mélange is interpreted as both tectonic and sedimentary origin. The tectonic origin is based on the
diverse array and high degree of mixing, and fracturing of exotic blocks in a matrix that includes serpentine.
The mélange is thought to have developed in the former Manila Trench during subduction of the South
China Sea ocean floor (Biq, 1971; Chai, 1972; Ho, 1977; Hsu, 1988; Karig, 1973). However, because of the
occurrence of minor stratified sediments and weakly sheared mudstones in the mélange, others consider
the Lichi Mélange as olistostromal in origin, which involves deposition by massive landslides of accretionary
wedge material into the western part of the Luzon forearc basin (Barrier & Muller, 1984; Ernst, 1977; Hsu,
1954; Page & Suppe, 1981; Wang, 1976). The olistostomal model assumes that the diverse types and origins of
blocks and matrix found in the mélange were sourced from the accretionary prism (e.g., Page & Suppe,
1981). Yet until now, there is no confirmation that ophiolitic rocks in the accretionary prism match with
those of the ETO. Later studies demonstrate that these stratified sedimentary rock occurrences are limited
in their lateral extent, and that they represent exotic blocks of sedimentary broken formation, that were
likely forearc basement incorporated into the mélange by two tectonic thrusting events during arc‐continent
collision (Chang et al., 2000, 2001;W. H. Chen et al., 2017; Huang et al., 2008, 2018). The retrowedge evolution
model is proposed to reconcile conflicting interpretations of the olistostromemodel and the tectonic collision
model (Chi et al., 2014; Malavieille et al., 2016).

The lack of precise geochronology and geochemistry from ophiolitic rock units contribute to the poor
understanding of the probable tectonic affinity of the ETO, its magmatic evolution and position during
accretion. Mineral and petrologic studies of ETO commenced in the 1960–1970s (e.g., Cheng et al.,
1976; Juan, 1964, 1967; Juan et al., 1953, 1960, 1965, 1976; Juan & Hsu, 1962; Juan & Lo, 1966; Juan &
Tien, 1962; Liou, 1974; Liou et al., 1977; Yen, 1968). Geochemical studies of major elements (e.g., Chou
et al., 1978; Jahn, 1986; Juan et al., 1976, 1980; Liou, 1974; Liou et al., 1977; Sun et al., 1979), preliminary
results of trace and rare‐earth element (e.g., Chou et al., 1978; Jahn, 1986; Yui & Yang, 1988), and Sr‐Nd‐
Pb isotope (Jahn, 1986; Shih et al., 1972; Sun, 1973) demonstrate that most of the mafic rocks of the ETO
are comagmatic and likely part of a single dismembered ophiolite body with the Philippine Sea (Liou,
1974; Shih et al., 1972) or South China Sea (Chung & Sun, 1992; Jahn, 1986; Liou et al., 1977; Suppe
et al., 1981). However, Chou et al. (1978) showed that glassy pillow basalts from the Kuanshan igneous
complex are akin to island arc tholeiite rather than MORB. Juan et al. (1980) proposed that the ophiolitic
materials are from the basement of the Coastal Range. Even with new U‐Pb zircon ages from the ETO
(Hsieh et al., 2016; Shao, 2015), there is still little agreement as to the origin and emplacement mechan-
ism of the ETO.

In this paper, we present more definitive trace and rare‐earth element data, and U‐Pb zircon ages from its
crustal rocks, and explore the spatial and temporal relationships among the ETO, the Lichi Mélange, the
oceanic crust of the South China Sea, and the incipient Luzon arc. Based on these new data and pub-
lished literature on the ETO and oceanic lithosphere around Taiwan, we propose a new tectonic model
to constrain the origin of the ETO and explain its possible emplacement mechanism and tectonic impli-
cations. Our model and interpretations provide new insights into the mode and tempo of subduction
initiation prior to the full development of the Luzon island arc and the ongoing arc‐continent collision
in Taiwan.

2. Regional Geology and Tectonics of the Coastal Range and Taiwan

The Taiwan orogenic belt is situated along the active convergent boundary between the Eurasian and
Philippine Sea plate and marks an active oblique arc‐continent collision zone (Figure 1; e.g., Chai, 1972;
Hayes & Lewis, 1984; Suppe, 1981; Tsai, 1986). The Eurasian plate with adjacent South China Sea oceanic
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lithosphere has been subducting beneath the Philippine Sea plate along the Manila trench in southern
Taiwan, whereas the Philippine Sea plate has been subducting beneath the Eurasian plate at the Ryukyu
trench in northeastern Taiwan (e.g., Karig, 1973; Suppe, 1984; Teng, 1996). Global kinematics indicates that
the Philippine Sea plate is currently converging northwestward at a velocity of 7 cm/yr with respect to the
Eurasian plate (Seno, 1977). The North Luzon Arc is moving toward the Asian continental margin with a
velocity of about 80–83 mm/yr on an azimuth of 310° (GPS data; Yu et al., 1997). The arc‐continent collision
in Taiwan initiated in the north at about 5 Ma (e.g., Teng, 1990) and then migrated southward to its present
position in Hengchun Peninsula (e.g., Chang & Chi, 1983; Suppe, 1981). The geological features of the sub-
marine environment off the southern tip of Taiwan provide a modern analog of the initial plate boundary

Figure 1. Tectonic map of Taiwan orogenic belt. Six modern geologic provinces off southeastern Taiwan are recognized
(modified from Huang et al., 1992): (1) the Manila Trench; (2) the Kaoping slope is connected with the Hsuehshan
Range andWestern Foothills, which is found stacked in thrust sheets of the foreland fold and thrust belt of Taiwan; (3) the
accretionary prism of the Hengchun Ridge represent southern extension of the Hengchun Peninsula and the Central
Range; (4) the Southern Longitudinal Trough (SLT) could be a southward extension of Longitudinal Valley collision
suture zone; (5) Huatung Ridge is a retrowedge ridge analogous to the Lichi Mélange; (6) the forearc basin of the Taitung
and the North Luzon Trough, which corresponds to Plio‐Pleistocene remnant forearc basins of the Coastal Range; (7) the
volcanic arcs of the North Luzon Arc is equivalent to the Miocene volcanic islands of the Coastal Range.
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conditions for the collision, and by moving northward along the collisional suture progressively more
mature collisional stages are observed. These stages include an increase in orogenic width and topographic
relief (Chen et al., 1988; Chen & Juang, 1986; Huang et al., 1992; Liu et al., 1997, 1998; Lundberg et al., 1997;
Malavieille et al., 2002; Malavieille & Trullenque, 2009; Reed et al., 1992).

Taiwan consists of five morphotectonic units that are separated by four major shear zones. Fromwest to east
these units are the Coastal Plain, Western Foothills, Hsuehshan Range, Central Range, and Coastal Range
(Figure 1). The accretionary wedge of the Manila subduction system progressively rises northward from
the submarine Hengchun Ridge to the Hengchun Peninsula to the Central Range (e.g., Huang et al., 1992,
1997; Liu et al., 1998; Reed et al., 1992). The fold‐and‐thrust belt forms the Coastal Plain, Western
Foothills, and Hsuehshan Range west of the Central Range (Ho, 1979, 1986). The Lishan‐Laonong fault zone
forms an east dipping boundary between the accretionary prism and the fold‐and‐thrust belt, and it is
considered to be analogous to the modern Manila Trench (Huang et al., 1997).

The Coastal Range in easternmost Taiwan consists mainly of the Luzon arc‐forearc of the Philippine Sea
Plate (Figure 2). These oceanic arc rocks have accreted onto the exhumed Eurasia continental metamorphic
basement of the eastern Central Range along the NNE‐SSW Longitudinal Valley suture zone in the last 2
million years (e.g., Chai, 1972; Chen & Wang, 1994; Hsu, 1956; Huang et al., 2006, 2018; Teng, 1990). The
tectonostratigraphic units of the Coastal Range include two obducted Miocene volcanic islands (Chimei
and Chengkuangao), which are overlain by the Tuluanshan Formation, Kangkou, and Tungho reef carbo-
nates, and turbidites (Dorsey, 1992; Yuan et al., 1988) deposited in intra‐arc basins (Huang et al., 1995).
These volcanic and sedimentary features strike southward into active volcanoes and sedimentary basins of
the present‐day North Luzon Arc. The Coastal Range also exposes four Plio‐Pleistocene remnant forearc
basins (Shuilien, Loho, Taiyuan, and Taitung) made up of flysch sequences of the Fansuliao Formation
and Paliwan Formation. These sequences strike to the south into deep water forearc turbidities in the
North Luzon Trough and the Taitung Trough.

The western flank of the central southern Coastal Range features the late Miocene to Pliocene Lichi
Mélange (Barrier & Muller, 1984; Chang, 1967, 1969; W. H. Chen et al., 2017; Chi et al., 1981; Huang
et al., 1979, 2008, 2018). The Lichi Mélange, which is exposed extensively along the eastern side of the
Longitudinal Valley, contains abundant exotic blocks of various sedimentary rocks, volcanic arc units,
and mafic and ultramafic bodies. The mafic and ultramafic rock bodies are collectively known as the
ETO. The ideal stratigraphic relationship of the ETO has been reconstructed by Liou et al. (1977) and
Suppe et al. (1981), even though the field occurrence of the ETO actually does not show an integrated
ophiolite stratigraphy. ETO fragments are mainly composed of serpentinized harzburgite, serpentinite brec-
cia, gabbro, rodingite, dolerite and plagiogranite dikes, basalts, and pelagic red clay (Liou et al., 1977). The
blocks are highly variable both in size and shape. The larger blocks are about >200–300 m in size, but much
smaller fragments of mafic and ultramafic rock representing the various units of an ophiolite sequence are
ubiquitous in the mélange (e.g., Hsu, 1956, 1976; Ho, 1977; Liou et al., 1977; Page & Suppe, 1981; this study).
The youngest deposits of the Coast Range are late‐collisional molasse units of the Peinanshan Conglomerate,
which overlies the Longitudinal Valley collisional suture and strikes south into the Southern Longitudinal
Trough (Ooe, 1939).

3. Sampling and Analytical Methods
3.1. Zircon U‐Pb Dating

Zircons separated from a pegmatite gabbro and plagiogranite were used for age analyses of ETO blocks in
Kuanshan. Rock samples were crushed to about 60 mesh. Zircons were extracted from the crushed rock by
desliming in water, density, and magnetic separation and handpicking. The zircons were mounted in epoxy
and polished down to nearly a half section to expose the internal structure of the grains. The structure of
the grains was imaged using cathodoluminescence (CL). The age of each grain was analyzed in situ on
the LA‐ICPMS at the State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of
Geochemistry, Chinese Academy of Sciences. The laser energy used was 80 mJ at a frequency of 8 Hz.
Laser ablation spots are 31 μm in diameter with 40 s of ablation time. Helium gas was used as a carrier
gas to the ICP source. NIST610 and TEM were used as external calibration standards and 95Zr as the
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internal standard. 207Pb/206Pb, 207Pb/235U, 206Pb/238U, and 208Pb/232Th ratios were calculated using iolite
(Paton et al., 2011).

3.2. Major and Trace Elements

Pillow basalt samples were collected from the ETO along the Jia‐WuRiver in Tienkuang village of Kuanshan
town of Taitung (Figure 3). Most of basalt samples are very fresh, but a few of samples are affected by altera-
tion associated with palagonite. We analyzed major and trace element compositions of glass fragments from
20 basalt samples using an electronmicroprobe and LA‐ICPMS techniques to avoid the altered positions. We
also analyzed an additional30 samples for whole‐rock geochemistry by X‐ray fluorescence spectrometry and
LA‐ICPMS. All analyses were conducted at the State Key Laboratory of Isotope Geochemistry, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences. The detailed methods of analyses are provided in
supporting information (Lin et al., 2016; Liu et al., 2008; Tu et al., 2011).

Figure 2. (a) Geological map of the Coastal Range, modified fromHsu (1956, 1976) and Chen andWang (1994). (b) Tectonostratigraphic map of the Coastal Range,
modified fromHuang et al. (1995). Note that most of the geologic units mapped in the Coastal Range strike offshore to the south and correlated with features in the
Luzon arc and proximal forearc basin.
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4. Mineralogy and Geochemistry of the ETO Basalts
4.1. Field Occurrence and Petrography

Blocks of ETO pillow basalt with glassy rims embedded in the Lichi Mélange are exposed along the Jia‐Wu
South Riverin the Teinkuang village near Kuanshan town and in the Lichi village along the Peinan River.
ETO basalt outcrops are composed of typical pillow lava (Figure 4a) containing hyaloclastite breccia
(Figure 4b) and black glassy margin (Figures 4b and 4c). The glassy outer margins comprise a variolitic zone
containing spherules in a glassy matrix (Figure 5a) and a core of holocrystalline porhyritic basalt (Figure 4d)
with an intergranular texture. Secondary calcite veins and vein networks are common in the glassy pillows
(Figure 4c). Thin, discontinuous pelagic red shale layers occur between the glassy basaltic lava flows and/or
some breccias layers (Figures 4e and 4f; Suppe et al., 1977). Vesicular structures are rare in the ETO glassy
basalts, suggesting a deep‐water (abyssal) origin under high hydrostatic stress (Dilek et al., 1997; Liou
et al., 1977; Moore, 1965).

Mineralogical and petrographic studies of ETO glassy basalts show that the rocks can be classified into two
groups: (1) Olivine‐bearing tholeiite (OL‐thol), which are 98 volume % glassy with small euhedral olivine
microphenocrysts (Figure 5b; Fo = 84–86) and minor chrome spinel, and (2) plagioclase‐bearing tholeiite
(PL‐thol), which are fine‐grained basalts with skeletal plagioclase microphenocrysts in a groundmass of
dendrites intergrowth of plagioclase (An = 70–72) and glass (Figure 5c). Augite‐phyric grains are rare in
our samples. These studies have also inferred that the two magmatic phases might simply be explained by

Figure 3. Simplified geological map of near (a) Lichi village and (b) Kuanshan‐Teinkuang (modified fromHsu, 1976; Liu et al., 1977; Lin et al., 2008) and sampling
locations.
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differences in the degree of differentiation of single parental magma (Juan et al., 1953, 1976; Liou, 1974). The
outer rims of the ETO glassy basalts have yellowish palagonite along cracks (Figures 5d and 5e; Liou, 1974;
this study).

4.2. Major Element Compositions

The major element data (Table 1 and Figure S1) for the ETO basalts straddle the boundary between the sub-
alkaline and alkaline series and fall into either the basalt or picritic basalt fields (Le Bas et al., 1986; Juan
et al., 1953; Juan, 1964; Liou, 1974; Liou et al., 1977; Chou et al., 1978; Sun et al., 1979; Jahn, 1986; this study).
The SiO2 contents range from 40.80 to 48.66 wt.%, the K2O contents vary from 0.06 to 0.54 wt.%, the Na2O
contents from 0.72 to 2.76 wt.%, and the TiO2 contents from 0.69 to 1.27 wt.%. Electron microprobe analyses
of glass in fresh basalt blocks in Kuanshan, Tienkuang, and Lichi (called as Likiliki by Juan et al., 1976) show
a negative correlation of MgO with SiO2 (Figure S2‐A; Juan et al., 1976; this study). The basalts from Lichi
have significantly higher SiO2 (48.80–51.16 wt.%) and a much lower MgO (7.56–8.11 wt.%) contents com-
pared to those from Kuanshan and Tienkuang (SiO2 = 40.8–48.66; MgO = 7.91–10.75%). However, there
is no direct evidence to confirm that basaltic blocks scattered in the Lichi Mélange are comagmatic.

Figure 4. Field occurrences of glassy pillow basalts of Teinkuang, Kuanshan in Taitung. (a) Pillow basalts, (b) hyaloclastites in pillow basalts, (c) carbonate veins
intrude into pillow basalts, (d) massive dolerite, (e) red shale deposited on the top of pillow lava, and (f) laminated red shale and basalts.
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Most ETO basalt samples show relatively high concentrations of CaO (10–12.5 wt.%) and a slightly negative
correlation between CaO and MgO, consistent with olivine fractionation in melt evolution (Figure S2‐B).
However, some samples from Jia‐Wu River of Tienkuang (JWB6‐5, JWB6‐6, JWB 7‐7, and JWB7‐8) have
relatively high MgO (9–16 wt.%) and low concentrations of CaO (2–4 wt.%) and high L.O.I. (8.28–
7.9 wt.%). The composition of these samples with high L.O.I. and low CaO concentrations must have been
significantly affected by alteration associated with palagonite. The Mg# of glassy pillow samples of the
ETO is 49–65, which is lower than that of a typical primary magma generally with Mg# of 68–75, suggesting
that our samples have a higher degree of crystallization differentiation. Concentrations of TiO2 (0.73 to
1.46 wt.%) tend to increase with decreasing MgO content although not significantly. This pattern suggests
a weak fractionation of Fe‐Ti oxide (Figure S2‐C). The contents of Al2O3 (14.3–18.2 wt.%) show a negative
correlation with MgO, indicating little or no plagioclase crystallized from the melt (Figure S2‐D).

Figure 5. Thin sections of glassy pillow basalts of Teinkuang, Kuanshan in Taitung. (a) Internal structure of pillow basalt, (b) OL‐bearing tholeiite, (c) PL‐bearing
tholeiite, and (d, e) glassy basalts with yellowish palagonite along cracks.
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4.3. REE and Trace Element Compositions

The trace element data (Table 1 and Figure 6) show that the analyzed basalt samples display two distinct
REE patterns, one with LREE enrichment, reminiscent of E‐MORB (Figures 6a‐(3) and 6b‐(3)), and the
other one with slight LREE depletion, similar to N‐MORB (Figures 6a‐(1) and 6b‐(1)). Primitive mantle‐
normalized incompatible element distribution patterns of basalt samples do not display HFSE anomalies

Table 1
Major and Trace Elements of the ETO Basalts From the Lichi Mélange of Eastern Taiwan

Sample name JWB1 JWB2 JWB3 JWB4 JWB5 JWB6‐3© JWB6‐3® JWB6‐6 JWB6‐5 JWB7‐7 JWB7‐8 JWB7‐1 BN1

XRF‐major element (wt.%)
SiO2 48.07 48.66 47.95 46.27 47.49 47.52 43.24 40.80 48.28 44.98 44.66 48.43 48.28
Al2O3 14.66 15.26 15.37 15.48 14.97 14.73 15.97 14.45 15.64 16.13 14.76 16.46 15.64
TiO2 0.90 0.94 0.98 1.00 1.08 1.12 0.70 1.16 0.86 0.74 0.87 1.05 0.86
CaO 10.99 11.38 10.75 10.27 11.70 13.54 10.52 3.31 11.24 10.12 8.88 11.26 11.24
K2O 0.24 0.08 0.09 0.13 0.12 0.07 0.06 0.54 0.07 0.25 0.23 0.42 0.07
Na2O 2.57 2.51 2.50 1.97 1.97 1.60 2.13 0.62 2.69 2.03 2.76 2.74 2.69
Fe2O3T 10.24 9.96 10.56 12.31 11.16 11.83 9.30 13.15 11.44 10.16 11.44 10.37 11.44
MgO 8.50 8.40 8.16 7.89 7.54 5.74 7.54 13.03 8.27 9.32 9.11 7.51 8.27
MnO 0.17 0.16 0.16 0.17 0.17 0.18 0.15 0.20 0.16 0.17 0.16 0.15 0.16
P2O5 0.06 0.06 0.07 0.06 0.08 0.08 0.05 0.03 0.06 0.05 0.06 0.12 0.06
L.O.I 3.09 2.51 3.16 4.11 3.31 2.73 10.26 13.04 1.32 5.55 6.64 1.49 1.32
Total 99.25 98.40 99.05 99.20 99.10 99.10 99.90 100.30 98.65 99.50 99.60 98.50 98.65
Mg# 62 63 61 56 57 49 62 66 59 65 61 59 59
LA‐ICPMS trace element (ppm)
Sc 38.6 34.5 41.6 34.5 37.4 39.5 34.1 39.8 30.9 40.5 43.7 32.0 30.9
V 225.2 217.3 253.9 201.1 239.4 230.0 187.7 219.1 194.6 187.6 203.5 200.8 194.6
Cr 328.8 322.8 368.0 305.2 289.6 312.4 276.9 307.0 303.4 312.7 266.3 224.7 303.4
Co 41.2 46.2 54.4 48.0 41.9 49.3 45.8 35.4 50.2 43.1 43.4 45.7 50.2
Ni 137.5 163.9 196.5 167.8 149.4 153.2 155.9 152.3 180.6 174.4 120.7 141.5 180.6
Cu 68.8 91.4 102.2 85.8 68.0 72.5 77.6 91.3 97.7 100.9 106.2 115.9 97.7
Zn 87.1 99.0 114.5 101.6 85.5 90.2 90.2 89.1 103.3 74.7 73.3 95.7 103.3
Ga 11.8 14.4 16.8 13.3 13.9 13.4 13.4 9.1 15.2 12.6 11.6 17.9 15.2
Rb 7 2 1 3 2 1 1 11 1 3 2 10 1
Sr 85.9 103.3 120.1 113.0 103.5 105.6 104.3 124 107.4 182.6 190.4 161 107.4
Zr 42 49 56 44 56 54 42 56 40 42 46 68 40
Nb 1.4 1.3 1.8 1.6 1.8 1.5 1.5 2.1 1.35 2.2 2.3 11.3 1.35
Mo 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.3 0.4 0.6 0.2
Cs 0.2 0.0 0.1 0.1 0.0 0.1 0.0 0.6 0.0 0.1 0.3 0.1 0.0
Ba 15 10 12 14 10 7 7 42 10 89 32 98 9.5
Hf 1.3 1.4 1.6 1.3 1.6 1.6 1.2 1.6 1.2 1.0 1.2 1.6 1.2
Ta 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.7 0.1
Pb 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.2 0.3 0.4 0.5 0.7 0.3
Th 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.2 1.0 0.1
LA‐ICPMS REE (ppm)
U 0.03 0.03 0.04 0.05 0.05 0.03 0.03 0.13 0.03 0.10 0.31 0.24 0.03
La 1.7 1.9 2.3 1.9 2.2 2.1 1.9 1.6 1.8 2.1 2.3 8.3 1.75
Ce 4.7 5.6 6.6 5.4 6.5 6.1 5.1 5.0 5.0 5.5 6.0 16.1 5.0
Pr 0.80 0.93 1.10 0.89 1.09 1.02 0.87 0.78 0.83 0.83 0.97 1.97 0.83
Nd 4.77 5.44 6.43 5.24 6.41 5.95 5.01 4.75 4.85 4.72 5.27 9.10 4.85
Sm 1.86 2.00 2.38 1.95 2.33 2.24 1.97 1.97 1.81 1.58 1.80 2.48 1.81
Eu 0.7 0.8 0.9 0.8 0.8 0.9 0.7 0.7 0.7 0.7 0.7 1.0 0.7
Gd 2.63 2.79 3.33 2.73 3.19 3.16 2.69 2.73 2.48 2.38 2.47 3.05 2.48
Tb 0.49 0.50 0.60 0.50 0.57 0.56 0.48 0.55 0.46 0.43 0.46 0.52 0.46
Dy 3.63 3.52 4.32 3.57 4.22 4.12 3.52 4.29 3.20 3.29 3.72 3.49 3.20
Ho 0.79 0.76 0.95 0.77 0.91 0.95 0.74 0.92 0.71 0.75 0.84 0.76 0.71
Er 2.3 2.2 2.8 2.2 2.7 2.8 2.3 2.7 2.0 2.2 2.6 2.1 2.0
Tm 0.35 0.32 0.41 0.34 0.40 0.41 0.31 0.40 0.29 0.32 0.37 0.31 0.29
Yb 2.25 2.28 2.76 2.25 2.69 2.64 2.07 2.58 2.04 2.36 2.50 2.13 2.04
Lu 0.33 0.33 0.41 0.33 0.39 0.39 0.32 0.37 0.30 0.35 0.38 0.31 0.30
Y 20.46 19.92 24.82 20.11 23.83 23.59 19.44 22.68 18.12 19.67 21.48 19.35 18.12

aThe table shows that the above data are the average value for each sample. All detailed experimental data are shown in supporting information.
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but have negative Pb anomalies. However, the samples (JWB6‐5, JWB6‐6, JWB7‐7, and JWB7‐8) with
relatively higher MgO and lower CaO contents exhibit slightly negative anomalies in Nb‐Ta and Ti and
positive anomalies for Rb, Ba, U, and Sr (Figure 6b‐(2)). Negative Eu anomalies are absent in all basalt
samples. Ni and Cr concentrations range from 121 to 197 ppm and from 225 to 368 ppm, respectively.

All analyzed ETO basalt samples have Ti‐V ratio ranges from 22 to 32, which fall in the field of MORB to
BABB on the Ti‐V diagram (Figure 7a; Shervais, 1982). In the Hf/3‐Th‐Ta diagram (Figure 7b; Wood,
1980), most of the data fall into the N‐MORB and E‐MORB fields, although some previously published
data of mafic rocks of the Lichi Mélange (Chen, 1990) plot in the IAT, CAB, and E‐MORB fields. In
the Cr‐Y discrimination diagram (Figure 7c; Pearce, 1982), the ETO basalt samples plot not only between
MORB and IAT fields but also relatively close to the MORB field. In the Nb/Yb‐Th/Yb diagram
(Figure 7d; Pearce, 2008), basalt data from the ETO, the IBM forearc, and the South China Sea plot with
MORB along the mantle array, but IBM forearc basalt shows much more depletion than the ETO and the
SCS basalts.

Figure 6. (a) Chondrite‐normalized REE patterns: Data are normalized to chondrite of Sun andMcDonough (1989). (b) Primitive mantle‐normalized trace element
multivariation diagrams for ETO basalt: Data are normalized to primitive mantle (PM) of McDonough and Sun (1995). N‐MORB, E‐MORB and OIB are from
Sun and McDonough (1989). Sample 947‐FAB, 975‐FAB, and 1091‐18 are average values of IBM forearc basalt data from Reagan et al. (2010). Sample 6 K1149,
6 K1153, 6 K1154, and 7 K419 are average values of IBM forearc basalt data from Ishizuka et al. (2011). Sample 349‐U1431E, 349‐U1433B, and 349‐U1434A are
average values of the South China Sea basalt data from Zhang et al. (2018).
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5. LA‐ICPMS Zircon U‐Pb Dating and Geochronology of the ETO
5.1. New Zircon Ages

A pegmatite gabbro sample (LCNO 16) collected from the Peinan River near the Lichi Bridge in Taitung was
used for U‐Pb zircon age analysis in this study (Figure 3a). Zircon grains from this gabbro sample are
euhedral to subhedral with alteration rims and poorly developed magmatic oscillatroy zoning or no zoning
as observed in cathodoluminescence images (Figure 8a). U‐Pb analyses of 60 zircon grains show Th/U ratios
ranging from 0.86 to 3.69. Thirty‐five analyzed points of individual grains plot near the Concordia and
yield 206Pb/238U ages ranging from 15 to 17 Ma (Table S2) with a weighted mean age of
16.65 ± 0.20 Ma (MSWD = 1.2).

Figure 7. (a) Ti‐V discrimination diagrams (Shervais, 1982) for ETO basalts of this study, IBM forearc basalt data (Ishizuka et al., 2011; Reagan et al., 2010), and the
South China Sea (Zhang et al., 2018). (b) Th‐Hf‐Ta discrimination diagram of Wood (1980) for ETO basalts, dolerite (Chen, 1990), amphibolites from Tungli
(Chen, 1990), IBM forearc basalt data (Ishizuka et al., 2011; Reagan et al., 2010), and the South China Sea (Zhang et al., 2018). (c) Cr‐Y discrimination
diagrams (Pearce, 1982) for ETO basalts of this study, IBM forearc basalt data (Ishizuka et al., 2011; Reagan et al., 2010), and the South China Sea (Zhang et al.,
2018). (d) Nb/Yb versus Th/Yb diagram (Pearce, 2008) for ETO basalts, IBM forearc data (Ishizuka et al., 2011; Reagan et al., 2010), Mariana arc data (Peate &
Pearce, 1998), and the South China Sea (Zhang et al., 2018).
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We also have analyzed a plagiogranite rock sample (JWB8), collected from the Jia‐Wu River in Kuanshan
(Figure 3b). Zircon grains extracted from the plagiogranite are euhedral with short to long prismatic shapes,
relatively large in size with lengths of 100–250 μm and widths of 90–200 μm. CL imaging of the zircon crys-
tals shows well‐developed magmatic oscillatroy zoning (Figure 8b). U‐Pb analyses of 20 zircon grains have
revealed Th/U ratios ranging from 0.23 to 1.13. Nine analyzed points of individual grains plot near the
Concordia and display 206Pb/238U ages ranging from 14 to 17 Ma (Table S2), with a weighted mean age of
16.05 ± 0.55 Ma (MSWD = 1.3).

5.2. Geochronology of the ETO and Oceanic Lithosphere Around Taiwan

The available age data from in situ South China Sea oceanic crust offshore Taiwan and our geochronology
results from the ETO are summarized in Tables 2 and 3. Most of the existing ages indicate the South China
Sea opened between the late Oligocene and middle Miocene (32–14 Ma; Taylor & Hayes, 1983; Ru & Pigott,
1986; Briais et al., 1993; Hsu et al., 2004; Barckhausen et al., 2014; Li et al., 2014), the West Philippine Sea
Basin developed in the Eocene (46–50 Ma; Karig, 1975; Ozima, Kaneoka, et al., 1977; Hilde & Lee, 1984;
28–26 Ma; Fujioka et al., 1999; Okino & Fujioka, 2003; Deschamps & Lallemand, 2002), and the Huatung
basin evolved either as an Eocenemarginal basin (about 33–42Ma; Karig, 1971; Hilde & Lee, 1984; Doo et al.,
2015) or as relic Neotethyan oceanic lithosphere (105–124 Ma; Deschamps et al., 2000; Yeh & Cheng, 2001;
Huang, 2012). Using the K‐Armethod, Jahn (1986) first reported the following ages from the ETO: 33 ± 5Ma
(plagiogranite), 14.6 ± 0.4 Ma (basaltic glass), 11 ± 4 Ma (pegmatite gabbro), and 8.1 ± 0.9 Ma (crystalline
basalt). Although the K‐Ar method may be problematic on submarine basalts (e.g., Foland et al., 1993;
Ozima, Saito, et al., 1977), we realize that the basaltic glass age obtained by Jahn (1986) is close to the lower
to middle Miocene biostratigraphic ages obtained from matrix sediments of plutonic breccias (Huang
et al., 1979).

Figure 8. (a) Concordia diagram and weighted mean 206Pb/238U ages of pegmatite gabbro and cathodoluminescence (CL) images of the zircon from the pegmatite
gabbro of the ETO, with the 206Pb/238U ages. (b) Concordia diagram andweightedmean 206Pb/238U ages of plagiogranite and cathodoluminescence (CL) images of
the zircon from the plagiogranite of the ETO, with the 206Pb/238U ages.
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New 206U‐238Pb zircon ages for blocks of pegmatitic gabbro and plagiogranite analyzed in this study yield
weighted mean ages of 16.65 ± 0.20 and 16.05 ± 0.55 Ma. These ages are very similar to other 206U‐238Pb ages
obtained previously from gabbro (17.4 ± 0.2 Ma), diorite (14.3 ± 0.5 Ma), and plagiogranite (14.1 ± 0.2 Ma)
blocks in the ETO (Hsieh et al., 2016; Shao, 2015). Furthermore, zircon and apatite fission track age analyses
of arc volcanic rocks in the Coastal Range show that the northern Luzon Arc initiated at ca. 16–15 Ma (Yang
et al., 1988, 1995), whereas new 206U‐238Pb dating of magmatic zircon from volcanic arc rocks in the Coastal
Range yield a mean age of 9.2–4.2 Ma (Lai et al., 2017; Shao, 2015). Comparing these new ages with those the
of possible sources of the mafic rocks near Taiwan, indicates that the ETO could be an accreted fragment of
the subducted South China Sea lower plate or a fragment of the forearc basement of Luzon arc upper plate.

6. Melt and Magmatic Evolution of the ETO Basalts in the Lichi Mélange
6.1. N‐MORB‐Like‐Type Basalts: Fore‐Arc or Back‐Arc Origin?

The ETO is exposed in the Lichi Mélange, which occupies a collision suture zone between the Luzon forearc
basins in the Coastal Range and accreted continental margin units of Asia. Previous studies debate whether
ETO fragments were accreted from the lower or upper plate based on different models for the origin of the
Lichi Mélange. In a recent survey of the Izu‐Bonin‐Mariana forearc, geologists found that the petrology and

Table 3
Summary of Ages of Oceanic Crusts Around Taiwan

Area of study Methods Age (Ma) Reference

South China Sea
East subbasin Magnetic anomaly 32–17 Ma Taylor and Hayes (1983)

~32 Ru and Pigott (1986)
33~15 Ma Li et al. (2014)

Central SCS basin Magnetic anomaly 32–16 Ma Briais et al. (1993)
Central SCS basin and northeastern SCS Magnetic anomaly 37–15 Ma Hsu et al. (2004)
Northwest subbasin Heat flow and bathymetry 35–36 Ru and Pigott (1986)
Southwest subbasin Magnetic anomaly 42–35 Ma Yao (1997)

Magnetic anomaly 31–20.5 Ma Barckhausen et al. (2014)
Heat flow and bathymetry ~55 Ma Ru and Pigott (1986)

West Philippine Sea
Magnetic anomaly 46–50 Ma Hilde and Lee (1984)

Site 293, DSDP Leg 31 Microfossil >late Eocene Karig (1975)
Site 293, DSDP Leg 31 Gabbro,40Ar‐39Ar 42 Ma Ozima, Kaneoka, et al.

(1977)
CBSC Basalts and dolerites, 28.1 ± 0.16 Ma Fujioka et al. (1999);

40Ar‐39Ar 26.1 ± 0.9 Ma Okino and Fujioka (2003)
Huatung Basin
20.40° N–121.47° E Magnetic anomaly 33–42 Ma Doo et al. (2015)
21.49° N–122.69° E Gabbro, 40Ar‐39Ar 105–124 Ma Deschamps et al. (2000)
Orchid Island Radiolarian fossils 113–117 Ma Yeh and Cheng (2001)

Table 2
Summary of Ages of the East Taiwan Ophiolite

Rock type Methods Age (Ma) Reference

Plagiogranite (WR) K‐Ar 33 ± 5 Jahn (1986)
Pegma. Gabbro (Hb) K‐Ar 11 ± 4 Jahn (1986)
Basalt (Glass) K‐Ar 14.6 ± 0.4 Jahn (1986)
Basalt (crystalline) K‐Ar 8.1 ± 0.9 Jahn (1986)
Gabbro Zircon U‐Pb 17.4 ± 0.2 Shao (2015, PhD thesis)
Diorite Zircon U‐Pb 14.3 ± 0.5 Shao (2015)
Plagiogranite Zircon U‐Pb 14.3 ± 0.3 Shao (2015)
Plagiogranite Zircon U‐Pb 14.1 ± 0.2 Shao (2015)
Hornblende gabbro Zircon U‐Pb 14.1 ± 0.4 Hsieh et al. (2016)
Pegma. Gabbro Zircon U‐Pb 16.65 ± 0.2 This study
Plagiogranite Zircon U‐Pb 16.05 ± 0.6 This study

10.1029/2018GC007902Geochemistry, Geophysics, Geosystems

LIN ET AL. 13



geochemistry of forearc oceanic lithosphere there is emblematic of a subduction initiation origin (Reagan
et al., 2010, 2017; Stern et al., 2012; Whattam & Stern, 2011). However, the geochemistry of the ETO differs
from what is found in the forearc of Izu‐Bonin‐Mariana regions.

The new designation of a Subduction Initiation Rule ophiolite (SIR ophiolite) is applied by Whattam and
Stern (2011) to most SSZ ophiolites due to a common chemostratigraphic progression from basal MORB
to upper volcanic arc basalt ± boninite. In the Izu‐Bonin Arc boninite is underlain by older tholeiitic basalt
whose chemical compositions are similar to MORB, generally known as MORB‐like‐type basalt (Stern et al.,
2012; Whattam & Stern, 2011). Reagan et al. (2010) and Ishizuka et al. (2011) report that MORB‐like lavas,
which average >1% TiO2, show variable depletion in LREE, are slightly depleted in HFSEs (e.g., Nb and Ta),
and display negative anomalies on multielement diagrams and (La/Nb) < 1. Volcanic arc basalts, on the
other hand, have lower TiO2 values, are enriched in fluid‐mobile elements (e.g., LILEs and LREEs), and
show strong depletions of HFSE relative to LREE (e.g., La/Nb > 1). Although the forearc basalt (FAB) has
affinities with MORB and BAB lavas, the ratios between HFSE/V and REE/V (e.g., Ti/V and Yb/V) of
MORB‐like lava are lower in FAB than in MORB and BABB (Ishizuka et al., 2011; Reagan et al., 2010;
Stern et al., 2012). Furthermore, concentrations of K, Rb, U, and other fluid‐soluble elements are highly vari-
able in FAB.

Major and trace elements indicated that geochemical features of ETO basalts are distributed betweenMORB
and MORB‐like basalt. Here two mantle sources for the ETO glassy basalts are identified, a depleted mantle
showing N‐MORB patterns (Figure 6b‐(1)) and a slightly enriched mantle displaying E‐MORB patterns
(Figure 6b‐(3); Jahn, 1986; this study). Most ETO glassy basalts have N‐MORB patterns and negative Pb
anomalies, which are general features of oceanic basalts (e.g., Hofmann, 1988; Hofmann et al., 1986). In con-
trast, whole rock analyses of basalt show a MORB‐like pattern, which is enriched in LILE (e.g., Rb, Ba, and
Sr) and LREEs but slightly depleted in HFSE (e.g., Nb, Ta, and Ti). The MORB‐like basalt could display the
effects of metasomatism of their mantle source by slab‐derived fluids (Figure 6b‐(2); e.g., Dilek et al., 2007,
2008; Dilek & Furnes, 2009, 2011, 2014; Ishizuka et al., 2011; Reagan et al., 2010; Stern et al., 2012). We do
not rule out the possibility that slight enrichments of fluid‐mobile elements (e.g., Ba, U, and Sr) resulted
from low‐temperature seafloor alteration.

Most of the ETO glassy basalt plots within the overlapping field of MORB and BABB on Ti versus ‐V,
Hf/3‐Th‐Ta, Cr versus ‐Y, and Nb/Yb versus ‐Ta/Yb diagrams (Figure 7). The geochemical fingerprint
of back‐arc basin tectonic settings is transitional from N‐MORB type to island arc basalts. In contrast,
trench‐distal back‐arc basalt displays a weaker geochemical signal of subduction influence (Dilek &
Furnes, 2011; Dilek & Furnes, 2014). Results of FAB studies play an important role in identifying the origin
of ETO basalt. As mentioned above, the FAB lavas have geochemical affinities with mid‐ocean ridge basalts
(MORB) and IBM intra‐arc lavas, but FAB lavas were derived from more depleted mantle sources (Reagan
et al., 2010; Ishizuka et al., 2011). The results of our analyses indicate that the geochemical features of ETO
basalt are more similar to MORB of the South China Sea (Zhang et al., 2018) than the FAB of the Mariana
forearc (Ishizuka et al., 2011; Reagan et al., 2010). In the Ti‐V discrimination diagram (Figure 7a), ETO
basaltic lavas have geochemical affinities with MORB and BABBs and have higher Ti/V ratios (range from
22 to 32) than IBM forearc basalts (range from 11 to 23). These differences reflect a greater depletion in
moderately incompatible elements in FAB source mantle. In the Cr‐Y discrimination diagram (Figure 7c),
forearc basalt of the IBM subduction system is distributed in a wide range between MORB and IAT, and
the features are clearly different for basalt of the ETO and the South China Sea. In Hf/3‐Th‐Ta (Figure 7b)
and Nb/Yb‐Th/Yb diagram (Figure 7d), most of the ETO, the SCS and IBM forearc basalt plot with
N‐MORB, indicating that they were derived from a depleted mantle source. It is worth noting that several
previously published data of the ETO dolerites also display an arc affinity in Hf/3‐Th‐Ta diagram (Chen,
1990). In other words, some ETO basalt as compositions subtly influenced by subduction, but this basalt
is not identical to typical forearc basalt. We consider that the ETO basaltic lava wasmuchmore likely formed
in a back‐arc basin, rather than a forearc setting.

6.2. E‐MORB‐Type Basalts: South China Sea MOR or Seamounts?

Several possible origins of E‐MORB lavas are proposed (e.g., Donnelly et al., 2004; Hofmann & White,
1982; Schilling, 1973; Schilling et al., 1985). For example, E‐MORB lavas may form from binary mixing
between an N‐MORB source and OIB/seamount material that is recycled by subduction (Hémond et al.,
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2006; Ulrich et al., 2012). Published data on basalt samples from the
West Philippine Sea (Pearce et al., 2005) and the Huatung Basin
(Hickey‐Vargas et al., 2008) show slight enrichment of flat REE
patterns but do not display HFSE anomalies in the primitive‐
normalized trace element distribution patterns.

These data collectively indicate that the geochemical composition of ETO
basalt is similar to that of typical E‐MORBs. However, geochemical and
geochronological data of this study do not lend by themselves a strong
support for the origin of E‐MORB basaltic lavas in the ETO from the
West Philippine Sea or the Huatung Basin. We realize that postspreading
seamounts in the South China Sea also have geochemical compositions
that display intraplate and OIB geochemical affinities (Tu et al., 1988,
1992; Zhang et al., 2017). Chung and Sun (1992) have argued that
E‐MORB magmas recovered from the South China Sea may have origi-
nated from enriched plume type or hot spot produced lava erupted in a
near‐ridge environment toward the end of its seafloor spreading history.
Marine observations confirm that some seamounts on the South China
Sea ocean floor have been subducted eastward beneath the Philippine
Sea plate along the Manila trench (Li et al., 2013). These studies indicate
that E‐MORB‐type basalt of the ETO may represent parts of seamounts
that were accreted to the front of the Luzon Arc from the subducting
South China Sea. It is noteworthy that the basalt samples from IODP
Expedition 349 indicate that the east subbasin of the South China Sea con-
sists of both normal N‐MORB‐type and E‐MORB‐type basalts (Zhang
et al., 2018).

6.3. Isotopic Fingerprints and Magma Sources of the ETO Basalts

The 87Sr/86Sr ratio of ETO basalts ranges from 0.7041 to 0.7048 (Chou et al., 1978; Jahn, 1986). The mean
value of 87Sr/86Sr for freshMORB and BABB is 0.7028 to 0.7031 (Gale et al., 2013). These results indicate that
ETO glassy basalt might have undergone seawater alteration or contamination by recycled crustal materials
during melt evolution. 143Nd/144Nd ratios of ETO basalts range from 0.513085 to 0.513320 (ɛNd (t) = +8.7 to
+13.3; Chou et al., 1978; Jahn, 1986), which are not only similar to MORB (ɛNd ≈ +7 to +10; Gale et al.,
2013), but also have the isotopic features of island arc basalts (ɛNd ≈ +8). These Nd isotopic compositions
overlap with the modern intra‐arc basalt as reported from the southern Mariana Trough (εNd
(t) = +7.2~ + 11.5; Gribble et al., 1996) and seafloor basalt of the South China Sea (ɛNd ≈ +6.44~ + 9.34;
Zhang et al., 2018).

Previous studies of the ETO show that E‐MORB is higher in 206Pb/204Pb and 208Pb/204Pb than N‐MORB
basalt (Chou et al., 1978; Jahn, 1986; Sun, 1980). Pb isotope compositions of ETO basalt are lower than those
of basaltic rock from the Huatung basin (206Pb/204Pb ratios = 18.35–19.21 and 208Pb/204Pb = 38.03–38.95;
Hickey‐Vargas et al., 2008), the West Philippine Sea (206Pb/204Pb ratios = 18.610–19.179 and 208Pb/
204Pb = 38.52–39.41; Hickey‐Vargas, 1998), and the IBM forearc setting (206Pb/204Pb ratios = 17.95–18.64
and 208Pb/204Pb = 38.11–38.46; Ishizuka et al., 2011). Based on 208Pb/204Pb versus 206Pb/204Pb diagrams
(Figure 9), Pb isotope values of the ETO basalts are similar to those of MORB of the South China Sea
(206Pb/204Pb ratios = 17.5939–18.5660 and 208Pb/204Pb = 37.5105–38.5334; Zhang et al., 2018). Thus, ETO
basalt shows a strong geochemical kinship to MORB‐type seafloor basalt of the South China Sea (Figure 9).

Most marginal basins, such as the Lau Basin and Parece‐Vela Basin behind the Izu‐Bonin‐Mariana Arc, were
originally developed as intra‐arc basins, which are now in back‐arc setting (Harris, 2003). The basalt
recovered from Site U1431E and U1433B in the South China Sea is tholeiitic and displays N‐MORB and
E‐MORB compositions, similar to the Indian OceanMORBs (Zhang et al., 2018). We infer that the geochem-
ical features of ETO basalt are compositionally and isotopically similar to MORB‐type basalt of the South
China Sea and that ETO basalt has a back‐arc origin. The geochemical characteristics of our samples of
ETO basalt indicate melt origins consistent with upper plate spreading centers of the back‐arc marginal

Figure 9. Diagrams of 208Pb/204Pb versus 206Pb/204Pb for ETO basalts
(Chou et al., 1978; Sun, 1980; Jahn, 1986), the Huatung Basin (Hickey‐
Vargas et al., 2008), the West Philippine Sea (Hickey‐Vargas, 1998), and the
South China Sea (Zhang et al., 2018). Sources of data for reference fields: the
Pacific MORBs and the Indian MORBs (Gale et al., 2013), BABB of the
Philippine Sea Plate (PetDB, the Petrological Database). The Northern
Hemisphere Reference Line (NHRL) is based on Hart (1984).
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sea. Although the opening dynamics of the South China Sea is still unclear (Briais et al., 1993; Flower et al.,
1998; Hall, 1996; Hilde et al., 1977; Holloway, 1982; Morley, 2002; Sun et al., 2006, 2016; Tapponnier et al.,
1990; Taylor & Hayes, 1983; Yao, 1997; Zhang et al., 2018; Zhou et al., 2002), we considered that the SCS
could be a marginal sea of back‐arc origin based on geochemical evidence from ETO basalt.

7. Tectonic Models for the Formation of the East Taiwan Ophiolite and the
Lichi Mélange
7.1. Assessment of the Existing Models and Interpretations

Models of the genesis of the Lichi Mélange play an important role in the explanation of emplacement
mechanisms of the ETO. Three different kinematic models have been proposed in the literature for the
origin of the Lichi Mélange. The first is that the mélange represents a subduction complex that developed
in the former Manila Trench during subduction of South China Sea oceanic lithosphere before arc‐continent
collision (Biq, 1971; Chai, 1972; Ho, 1977; Hsu, 1988; Karig, 1973). However, imaging of the Huatung Ridge,
which is the offshore extension of the Lichi Mélange, shows that Huatung Ridge is associated with the retro
wedge instead of the fore wedge of the collision (Huang et al., 1992; Huang & Yin, 1990; Liu et al., 1997, 1998;
Malavieille et al., 2002; Malavieille & Trullenque, 2009; Reed et al., 1992).

The second model suggests that the Lichi Mélange originated from sedimentary processes triggered by
submarine landslides (olistostrome), sourced from the accretionary wedge and deposited in the western part
of the North Luzon Trough forearc basin (Barrier & Muller, 1984; Ernst, 1977; Ho, 1977; Page & Suppe,
1981; Wang, 1976). The olistostrome model is based on the interpretation that the Lichi Mélange was
emplaced by surficial processes and that its chaotic facies is intercalated with the Takangkou Formation
(now named as Fansuliao Formation in the Geological Map of the Coastal Range; Page & Suppe, 1981).
However, published biostratigraphic data indicates that forearc sequences have little to no lateral extent
because they themselves consist of a highly sheared broken formation. Also, the blocks of sheared sedimen-
tary units are older than the remnant forearc sequences (e.g., Huang et al., 2008). Seismic profiles across the
North Luzon Trough forearc basin off southeastern Taiwan, structural data, vitrinite reflectance data, and Nd
isotope compositions all indicate that the Lichi Mélange is not coeval with Takangkou Formation (W. H.
Chen et al., 2017; Huang et al., 2018). The third model for the Liche Mélange interprets it as generated by
shearing of the retro wedge thrust system of the collision involving lower forearc sequences. Themélange con-
tinues southward to the Huatung Ridge off southeastern Taiwan and is therefore part of the deformed North
Luzon Trough forearc sequences (Chang et al., 2000, 2001; W. H. Chen et al., 2017; Huang et al., 2008, 2018).

The previous two models interpret the ETO as MOR‐formed crustal fragments accreted from South China
Sea oceanic crust. These interpretations are based on geochemical characteristics of the ETO (e.g., Chung
& Sun, 1992; Jahn, 1986; Liou et al., 1977; Shih et al., 1972) and on the early interpretations of the origin
of the mélange. The latter model is based on seismic reflection profiles and along‐strike tectonic reconstruc-
tions that depict the ETO as a dismembered SSZ‐type ophiolitic block originating as forearc basement, from
the Huatung basin or from the Philippine Sea Plate. The mélange blocks would then be fragments of the
western edge of the Philippine Sea Plate that is being emplaced by arc‐ward back‐thrusting during arc‐
continent collision (Chang et al., 2000, 2001; W. H. Chen et al., 2017; Huang et al., 2008, 2018).

Based on the conflicting interpretations of the mélange as olistostrome or tectonic, some researchers propose
a fourth model, known as the retrowedge evolution model (Chi et al., 2014; Malavieille et al., 2016). This
model suggests that both olistostrome slumping and backthurst faulting played important roles in the evolu-
tion of the Lichi Mélange and interprets the ETO blocks as mainly from upper plate forearc basement later
incorporated into the Lichi Mélange by thrusting and slumping during arc‐continent collision. However, in
the above models, there is not enough geochemical evidence to confirm directly the provenance of the ETO
fragments in the Lichi Mélange.

7.2. Possible Tectonic Models

Although the tectonic relationships of the ETO with the origin of the Lichi Mélange and the Huatung Ridge
are mostly equivocal at this point, our study indicates that the ETO basalt is much more like mid‐ocean ridge
or back‐arc lava and is most similar to the South China Sea. This result is the same as the conclusion inferred
by most geologists who proposed that the ETO was incorporated into subduction complex from the lower
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Figure 10. Possible evolutions of initiation subduction of theManila Trench and the emplacement mechanism of the ETO
during arc‐continent collision. (a) Stage 1 (17–15 Ma): South China Sea seafloor spreading ended at about this period.
(b, c) Stage 2 (<14–9 Ma): A transform fault began to convert into the nascent Manila Trench and the North Luzon Arc
formed. (d) Stage 3 (6–5 Ma): Hengchun Peninsula (accretionary wedge) and North Luzon Arc (NLA) provided sediments
into the North Luzon Trough (forearc basin). Seamounts subducted and lower and upper plate oceanic lithosphere
material mixed each other in a subduction channel. (e) Stage 4 (4–3 Ma), ETO fragments were incorporated into the
Huatung Ridge (proto‐Lichi mélange) through back‐thrusting during the initial arc‐continent collision stage of Taiwan.
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plate (Biq, 1971; Chai, 1972; Ho, 1977; Hsu, 1988; Karig, 1973) and represents an olistostrome (Barrier &
Muller, 1984; Ernst, 1977; Ho, 1977; Page & Suppe, 1981; Wang, 1976). The debate about the origin of the
Liche Mélange is ongoing (Chang et al., 2000, 2001; Chi et al., 2014; W. H. Chen et al., 2017; Huang et al.,
2008, 2018); however, we agree with initial interpretation that the ETO was accreted from the SCS.

Emplacement of the ETO basalts related to subduction initiation of the South China Sea is consistent with
the geochemical and geochronologic evidence of this study. During initiation of subduction at the nascent
Manila Trench, parts of oceanic crust of the South China Sea were likely accreted to the Luzon forearc
(Figures 10a–10c). Although it is unclear as to how the Manila Trench was formed, it is possible that it
involved initiation at a transform/fracture zone that converted into a convergent plate boundary (e.g.,
Mueller & Phillips, 1991; Stern, 2004). According to this scenario, it would be possible to mix oceanic
material from the upper and lower plates at a shallow level of the subduction channel. However, as the
accretionary wedge evolved, most accreted material from the lower plate would likely experience increasing
degrees of metamorphism. Exhumation of these rocks coincides with the transition from oceanic subduction
to continental collision (e.g., Malavieille, 2010; Warren et al., 2008).

The existence of SSZ‐type blocks in the Lichi Mélange (Chen, 1990; Chou et al., 1978; Juan et al., 1980) is
consistent with the hypothesis of the tectonic collision model (Chang et al., 2000, 2001; W. H. Chen et al.,
2017; Huang et al., 2008, 2018). We cannot exclude the possibility that some ETO fragments have a compo-
site origin where upper crustal rocks sheared from the lower plate are mixed with blocks of harzburgite and
serpentinite from the upper plate in a subduction channel (Figure 10d). The concept of a subduction channel
explains the high degree of mixing of disparate rock types such as greenschist‐amphibolite facies meta-
morphic rocks with peridotite, basalt, sediment, antigorite, and clay (Ernst & Liou, 1984; Liou et al., 1977;
Liou & Ernst, 1979; Lo et al., 1978; Morishita et al., 2018; Page & Suppe, 1981). Previous studies interpret
the lower grade metamorphic rocks as originating from seafloor metamorphism at a spreading ridge (Liou
et al., 1977; Liou & Ernst, 1979), but another possibility is that they were metamorphosed by slab‐derived
fluids in subduction channel before they were exhumed (Morishita et al., 2018). The detrital zircon age of
the Yuli Belt of the eastern Central Range indicates that the greenschist‐amphibolite facies metamorphic
complex formed from middle‐late Miocene (W. S. Chen et al., 2017). Some of the metamorphic rocks in
the Yuli Belt probably have affinities with the ETO of the Lichi Mélange. Therefore, we consider that the exo-
tic metamorphic blocks of the Lichi Mélange were likely brought up to the surface through return flow
within the subduction channel (Cloos & Shreve, 1988; Shreve & Cloos, 1986). Return flow explains the mix-
ing of these metamorphosed rocks with upper and lower plate materials. However, the return flow in this
case is localized along the retro wedge subduction channel that accommodates back‐thrusting of the accre-
tionary wedge (Huatung Ridge) over the fore‐arc.

Our tectonic model proposes that the majority of ETO basalt was accreted to the Luzon forearc from
downgoing oceanic lithosphere of the SCS during the process of subduction initiation along the Manila
Trench (Figures 10a–10c). Due to the early stage of accretion, these accreted blocks formed the rear of the
accretionary wedge where they are currently found next to forearc basin units. In the structural setting in
which they were accreted, the ETO basalt became part of the initial subduction channel. The subduction
channel was later exhumed by back‐thrusting in the process of formation of the Huatung Ridge during
arc‐continent collision in late Miocene to early Pliocene (Figures 10d and 10e).

8. Conclusions

The Lichi Mélange in the Coastal Range of eastern Taiwan contains blocks of oceanic lithosphere, some
of which constituted a once intact ophiolite sequence, known as the East Taiwan Ophiolite (ETO).
Geochemical evidence indicates that magmas of glassy basalts of the ETO may have been derived from
two mantle sources: (1) slightly depleted mantle with N‐MORB to MORB‐like characters and (2) enriched
mantle with an E‐MORB signature. The existing Sr‐Nd‐Pb isotope and trace element data indicate that
ETO basalts are geochemically reminiscent of the MORB lavas recovered from the South China Sea,
although they also display a hint of intra‐oceanic arc geochemical affinities. Minor E‐MORB occurrence
in the ETO lavas may be an artifact of either accretion of seamount lavas originating from the South
China Sea or contamination of ETO melts by subducted seamounts and sediments during the initial
construction of the Luzon Arc. Our new zircon ages from gabbro and plagiogranite rocks in the ETO
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constrain the timing of SCS oceanic crust construction as 16–15Ma.We infer that ETO basalt was accreted to
the forearc during the process of subduction initiation along the Manila Trench, but one cannot exclude the
possibility that some ophiolitic fragments could have originated from either the lower and upper oceanic
plates and later were mixed in a subduction channel. The subduction channel was exhumed during retro-
wedge thrusting and the formation of the Huatung Ridge over the forearc during late Miocene to
early Pliocene.
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