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Abstract In 1852, a 5-min long earthquake struck the Banda Arc region of Indonesia that
was felt over most of Indonesia. It caused uplift of new islands and sent a tsunami across
the Banda Sea that reached a height of 8 m at Banda Neira and was also registered at
Ambon, Saparua and other islands. Records of the 1852 earthquake at multiple locations
provide the constraints needed to reconstruct the disastrous event through numerical
modeling using Clawpack. Tsunami heights at various locations are the primary obser-
vations we use to test modeling results. The best fit models indicate that the earthquake was
most likely a megathrust event along the Tanimbar Trough of >Mw 8.4. At least 10-15 m
of elastic strain has accumulated along the Tanimbar Through since the 1852 event, which
is enough to cause an earthquake of similar size to the one in 1852. However, 10 times
more people in the region are exposed to tsunami hazards than in the past.

Keywords Megathrust earthquake - Tsunami modeling - Eastern Indonesia - Banda Arc -
Tanimbar Trough - Historical earthquake

1 Introduction

The purpose of this paper is to reconstruct the 1852 eastern Indonesian earthquake and
tsunami from historical accounts, numerical modeling and a site visit. This event was felt
over a 2000 km wide area and created a wide-spread tsunami across the Banda Sea.
Numerical models of geophysical events like these provide a way to determine the likely
source region and fault parameters of the earthquake and to assess the impact a reoccur-
rence of this event will have on densely populated coastal communities. The population in
coastal regions of eastern Indonesia has increased tenfold since 1852. During this time of
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rapid growth, there has not been a major earthquake or tsunami in the region. At con-
vergence rates of 75—-110 mm/year, up to 10-15 m of potential slip has likely accumulated
along some plate boundary segments (Harris 2011; Harris and Major 2016).

Tsunami models of the 1852 event can inform coastal communities how to prevent
tsunami hazards from becoming full-scale disasters by providing tsunami inundation
estimates for densely populated coastal communities. One of the greatest lessons learned
from the 2011 Tohoku Earthquake is the importance of incorporating historic records into
hazard models. This devastating earthquake struck in areas designated as low probability in
the seismic hazard models used at the time (Stein et al. 2012). The models were based
mostly on instrumental records over the past 50-70 years versus geological and historical
data. Megathrust earthquakes, such as the Tohoku event and several recent events in
Indonesia, reoccur at intervals of hundreds to thousands of years. By factoring in historical
earthquake records to probability estimates, Tohoku had one of the highest probabilities of
a megathrust event (i.e., Kelleher et al. 1973). Geological records, such as tsunami
deposits, also provided evidence that megathrust earthquakes had occurred offshore
Tohoku (Minoura et al. 2001).

Wichmann (1918) compiled an invaluable record of historic earthquakes and tsunamis
that struck the Indonesian region during most of the Dutch colonial period (1500-1877).
However, this compilation, which was published during colonial times in old German and
Dutch, has not been available until recently when it was translated into English (Harris and
Major 2016). The catalog documents frequent megathrust earthquakes and tsunami in the
region. Some of the major events that happened in the 1800’s in western Indonesia have
reoccurred in the last 10 years along similar patches of the subduction interface as
reconstructed from the Wichmann catalog (Newcomb and McCann 1987).

Reconstructions of historic earthquake events in other parts of Indonesia are needed to
more accurately assess the disaster potential of large earthquakes and tsunamis. Numerical
models of some of these events are possible if both the arrival times after shaking and run-
up heights of tsunamis they caused were recorded. These crucial data make it possible to
reconstruct the likely source region of the event and its moment magnitude. This approach
has proven useful for discovering previously unknown source regions of megathrust
earthquakes in eastern Indonesia (Liu and Harris 2013). Some of the tsunamis are also
recorded in the recent geologic record (Harris and Major 2016).

1.1 Tectonic setting

Indonesia is at the heart of a three-way tectonic collision between the Australian, Asian and
Pacific Plates. It is located along the Southeast edge of continental SE Asia, which is the
upper plate to two major subduction zones. The Sunda subduction system forms along the
western and southern edge of Indonesia where the Australian plate is converging at a rate
of 50-75 mm/year (Fig. 1; Nugroho et al. 2009). Along the eastern side of Indonesia is a
series of subduction zones and transform faults that form the plate boundary with the
Pacific Plate, which converges at a rate of 100—110 mm/year (Kreemer et al. 2000). The
Banda Arc, where the lower plate includes parts of the northern Australian passive con-
tinental margin, connects the Sunda and eastern Indonesia subduction systems through a
bend of 180° (Fig. 1).

The western part of the Sunda Arc has experienced several megathrust earthquakes over
the past decade (Yeates 2012). However, the eastern part of the Sunda Arc, Banda Arc and
eastern Indonesia subduction zones remained relatively quiet over the past 150 years
(Harris and Major 2016). GPS measurements throughout the Banda Arc show that elastic
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Fig. 1 Digital elevation model and tectonic features of Eastern Indonesia. Red triangles represent active
volcanoes and black lines indicate major active faults along plate boundary segments. Plate motions are
relative to the Asian Plate

strain is accumulating in a diffuse zone between the Timor Trough and Sulawesi (Nugroho
et al. 2009). Within this zone are the Wetar and Flores backarc thrust systems (Fig. 1). The
Wetar backarc thrust is accommodating up to 60 % of the plate convergence (Harris 1991,
2011). However, this thrust may not produce a long enough rupture for a megathrust event.
The most likely active faults to generate a giant earthquake and regional tsunami are the
Timor, Tanimbar and Seram Troughs of the Banda Arc-Continent Collision zone. At least
22 mm/year of convergence along these large plate boundary segments is loading in the
Timor and Tanimbar Trough (Nugroho et al. 2009). The convergence rate on the Seram
Trough is twice as fast (Rangin et al. 1999).

2 Historic earthquakes of eastern Indonesia
2.1 Wichmann catalog

Major geophysical events were recorded in Indonesia during the Dutch colonial era. These
observations were later compiled and published as “The Earthquakes of the Indian
Archipelago” by Arthur Wichmann (1918), known here as the Wichmann catalog. This
catalog documents 166 destructive earthquakes and 43 tsunami between 1538 and 1877
(Wichmann 1918). From 1600 to 1877, at least 600 major and minor earthquakes and 21
tsunami were documented in the southern Banda Sea region alone, namely in the Banda
Islands, Ambon, Haruku, Saparua, Seram and Timor (Fig. 2). The abundance of earth-
quakes in the region waxed and waned with peaks of activity during 1629-1644,
1675-1711, 1754-1775, 1815-1846, and 1850-to the end of the record (1877). The
1814-1846 cluster included the eruption of Tambora, which is Earth’s largest historic
eruption (Harris and Major 2016). The earthquake clusters are bounded by major events at
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Fig. 2 Major historical earthquakes (red), number of all historical earthquakes (black) and number of
tsunamis (blue) in Maluku Region from 1600 to 1877 in Wichmann catalog. Major earthquakes shake for
>2 min, damage well-constructed buildings, are felt across the Banda Sea are followed by over 8 days of
aftershocks

the beginning and ends of each period and have temporal distribution tails that diminish
with time in the typical pattern of aftershocks. Major earthquake events with over 2 min of
shaking commonly damaged well-constructed buildings (i.e., government buildings).
These events were also felt across the region and were followed by weeks of aftershocks
(Fig. 2). Most of these events were also accompanied by tsunamis.

From the first reliable account of earthquake damage in 1608, there have been at least
77 destructive earthquakes and 32 tsunamis in the southern Banda Sea region (Fig. 3;
Table 1; Latief et al. 2000; BMKG 2011; Soloviev and Go 1984). During the 270-year
period of the Wichmann catalog (1608—1877), there were 49 destructive earthquakes and
22 tsunamis. During the 136 years since this time (1878-2014), there have been 28
destructive earthquakes and 10 tsunamis (Latief et al. 2000). The rate of destructive
earthquakes for both time periods is one major event every 5 years. The rate of destructive
earthquakes associated with tsunamis is a bit higher in the earlier time period (1608-1877)
than the later one (1878-2014), once in every 12 years versus once in every 14 years,
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Fig. 3 Major earthquakes (red), number of destructive earthquakes (black), and number of destructive
tsunamis (blue) in Maluku region from 1600 to 2014. Records are compiled from catalogs by Wichmann
(1815), Latief et al. (2000); Soloviev and Go (1984) and BM. KG of Indonesia (2012). Blue numbers
indicate the recorded run-up heights on Banda Islands in the 1629 and 1852 earthquakes
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respectively. The number of destructive earthquakes has increased since 1975 most likely
because of large increases in population and urbanization and better reporting.

Earthquakes in the record cluster in time and space, which is consistent with a stress
contagion effect. While the rate of destructive earthquakes remained the same from 1600 to
2014, the size of destructive earthquakes has largely decreased since 1877. No catastrophic
earthquake nor tsunami is recorded in the southern Maluku region since 1899. The Banda
Islands have not experienced a tsunami higher than 5 m since 1852, whereas it experienced
3 major tsunamis in roughly the same amount of time previous to 1852. The reoccurrence
of major earthquake events, such as those that happened in 1629, 1765, 1852 and 1873,
will devastate this region now that it has much more to lose.

2.2 1852 Earthquake

The gigantic earthquake of 1852, and the tsunami it produced, is perhaps the largest
historic event of its kind in eastern Indonesia (Table 2; van Vlief 1853), which rivals the
1629 event (Liu and Harris 2013). The main shock of the earthquake took place between 7
a.m. and 8 a.m. on November 26, 1852. Later that day, 9 aftershocks were felt. Aftershocks
happened daily for the next 8 days and occasionally in the following months and years.
The main shock involved 5 min of violent ground shaking as documented in Banda Neira,
Rosengain, Pulu Ai, Ambon, Saparua, Haruku, Buru and Seram. Movement was felt as far
as Madura Island and East Java (Fig. 4; Table 2; van Vlief 1853), which is 2000 km away
from the Banda Islands where most of the damage occurred. The buildings in Banda Neira
(Fig. 1) were leveled during the first shock. Ambon (Fig. 1) was rocked by ENE-WSW
directional shaking. On Huruku (Fig. 1), Aborn Church and Fort Zeelandia were cracked
as the result of shaking. In Surabaya (Fig. 1), Lake Grati was “set in motion” by a weak
NW-SE shock.

Following the earthquake, islands in the Banda Sea were inundated by a tsunami
(Fig. 5). The details of arrival times and run-up heights for each island were compiled by
van Vlief (1853). The “flood wave”, as it is referred to in the historical account, arrived at
Banda Neira within 15-20 min. The account records that, “the bay was quickly filled with
water, and then just as quickly emptied, such that for a time it appeared to be nothing but a
narrow river.” Depth charts of the day show the bay was at least 4 meters deep. After the
sea withdrew, tsunami waves crashed into the islands for over 2 h until three big waves
arrived at Zonnegat and Lonthor Sound. These waves achieved 8 m run-up heights at Fort
Belgica on Banda Neira (Fig. 5a) and completely inundated the coastal plain of Lonthor.
The north coast of Banda Neira and south coast of Lonthor were not inundated. On Pulu
Ai, tsunami waves were <l m high.

Ambon bay, which is 200 km from the Banda Islands, was invaded by “a rising of
water, which was followed by a fast out flow” shortly after the quake (Fig. 5b). The first
five tsunami waves reached a run-up height of 1.8 m and the process continued for over
6 h. Tsunami waves penetrated the Bay of Saparua four times 1 h after the quake and,
“reached a height of 3 m above the highest high water level” and inundated 127 m inland.
The tsunami was also noted on Haruku, Nasalaut, Buru and Seram (Fig. 5b; Table 2). The
record also states that no tsunami was observed at Surabaya and Labuha. Other
notable effects from the earthquake were landslides on Banda Neira, Saparua and southeast
Haruku, and the birth of at least three new islands in the Kei archipelago. No magmatic
activity was observed throughout Indonesia during the event.
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Fig. 4 Reconstructed modified Mercalli scale intensity map of the 1852 earthquake according to
descriptions in the Wichmann catalog compiled by van Vlief (1853) and translated into English by Harris
and Major (2016). New islands created during the event are represented by red boxes. The dashed rectangle

is the most likely rapture zone

2.3 Modified Mercalli intensity map

We constructed a modified Mercalli intensity (MMI) map from descriptions of the 1852
earthquake (van Vlief 1853) with a speculative earthquake epicenter south of the Banda
Islands. The MMI contours stretch NE-SW from East Java to Halmahera (Fig. 4).
Although land-level changes are common closest to the epicenter of gigantic earthquakes,
the new islands that appeared fit the description of mud volcanoes and may have formed at
some distance from the epicenter. For example, a Mw = 7.7 earthquake in Pakistan on 24
September of 2013 formed new mud volcano islands along the coast nearly 400 km form

the epicenter of the event (NASA 2013).
We estimate the distance of the epicenter from various places where the tsunami was

observed by using the tsunami propagation equation in the open ocean:

V=+\/gD=4d/t

where V is velocity of tsunami propagation, g is gravitational force, D is water depth, d is
distance between the tsunami source and the location it arrives at, and ¢ is the tsunami
arrival time. According to the arrival times of the tsunami noted in the Banda Islands, a
reasonable distance to the source of the tsunami is 300-450 km. The most likely source at
this distance is the Tanimbar Trough, which marks the subduction boundary between the
eastern Banda Arc upper plate and the underthrust Australian passive continental margin.

2.4 Field inspection

We conducted a cursory field investigation of sites both in Banda Neira and Ambon
mentioned in historical records that may preserve geological evidence of the 1852
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Fig. 5 a Map of Banda Islands and Pulu Ai (see Fig. 1). Observed run-up heights in 1852 earthquake
according to (van Vlief 1853; Harris and Major 2016) are indicated by blue rectangles. Blue “X” represents
no tsunami observation in the area. Locations of virtual tidal gauges (gauge 1, 2 and 5) are indicated by
black squares. b Map of Uliassera islands (see Fig. 1). Observed run-up heights (blue rectangles) from 1852
tsunami according to (van Vlief 1853; Harris and Major 2016). Other locations mentioned in the catalog
with no observed tsunami are shown as open boxes. Locations of virtual tidal gauges (gauge 6-19) are
indicated as black squares

earthquake and tsunami. Trenches were excavated near the coasts in both locations.
Several candidate tsunami deposits were found with characteristic sedimentary structures
(i.e., Monecke et al. 2008) overlying an erosional surfaces covered by shell and human
occupation debris. The detailed sedimentology and age relations of these deposits are
currently being investigated. However, one trench in Banda Neira (Fig. 6) reoccupied a
trench previous excavated by archeologists (Lape 2000). A distinct tsunami deposit around
40 cm thick was located at a nineteenth century stratigraphic level, which is likely from the
1852 tsunami (Fig. 7).

@ Springer



Nat Hazards

zlSEl\ruﬁg&p' onl

1852 runup * %
L P %

e &

F()r!' Bélgica

Fig. 6 Photograph of Banda Neira from the top of Banda Api (looking east). The inundation levels of three
historical tsunamis that have struck to the island, including the 1852 event, are shown. The 1629 event is
reconstructed by Liu and Harris (2013). The trench site location for Fig. 10 is shown

3 Numerical model

We used a series of numerical models to reconstruct the tsunami associated with the
1852 Banda earthquake. Constraints for the models, such as tsunami arrival times, run-
up heights and wave-forms, are taken from historic accounts. The models were con-
structed using GeoClaw from Clawpack (Conservation laws Package), which is
designed to solve two-dimensional, depth-averaged, shallow water equations (Berger
et al. 2011; LeVeque et al. 2013). It uses high-resolution shock-capturing finite volume
methods, allowing adaptive mesh refinement for efficient solutions of large-scale geo-
physical problems. Clawpack is an open source program provided through the
University of Washington and was recognized by the United States National Tsunami
Hazard Mitigation Program for hazard-modeling in 2012. GeoClaw is appropriate for
modeling large-scale tsunami generated from megathrust earthquakes propagating over
a big area. Input parameters are limited to generate fault plane solutions and basic
bathymetry data. Adaptive mesh-grid refinement is used for detailed inundation and
run-up modeling.

GeoClaw was also used in investigations of slip distributions in the 2011 Tohoku
earthquake and the 1952 Kamchatka earthquake, which proved its robustness for modeling
large earthquake and tsunami events (Maclnnes et al. 2007, 2013).
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Fig. 7 Trench into 1852 tsunami deposit in Banda Neira. The upper light colored layer is fine sand near the
top of the deposit. Based on archeological studies of the trench (Lape 2000), the stratigraphic interval
between the two white, fine sand bands is likely 1852 tsunami deposit, and the one below it is likely the 1629
tsunami deposit

3.1 Bathymetry/topography

Bathymetric and topographic data in the model are primarily extracted from Digital Ele-
vation Models, ETOPO and Global Multi-Resolution Topography (Amante and Eakins
2009; Ryan et al. 2009). Throughout our modeling, grid resolution ranged between 3" and
1°. The resolution of initial vertical deformation files is 3’. Grid resolution in the Banda Sea
varies between 1° and 30” during the course of the simulation. A fixed grid is applied at
Ambon, the Banda Island and Saparua at a maximum of 3” for the inundation and runup
simulations.

3.2 Fault parameters and vertical seafloor deformation

Fault parameter estimates for reconstructing the 1852 earthquake are taken from fault plane
solutions of small instrumental events recorded along the subduction interface in the
Tanimbar Trough region. Co-seismic re-bound of the subduction interface at a shallow dip
angle (<15°) and shallow depth (<15 km) is a common causes of megathrust earthquakes,
such as those in Sumatra (i.e., Zachariasen et al. 1999). Rupture length estimates of the
Tanimbar Trough are based on the length of the straightest, uninterrupted segment, which
has a maximum length of 540 km, and strikes from 190 to 220°. This segment is truncated
to the north by the Tiera Aiduna transcurrent fault and to the south by a sharp bend to the
west (Fig. 1). The scaling of the rupture length and width of the simulated earthquake was
calculated using empirical relationships compiled by Wells and Coppersmith (1994;
Table 3). Models with rupture along two different segments are also used to better fit the
curvature of the Tanimbar Trough (Table 4).

Table 3 Wells and Coppersmiths equations (1994)

Mw = (5.08 £ 0.10) + (1.16 &+ 0.07) x log (surface rupture length)
Mw = (4.33 £ 0.12) 4+ (0.90 & 0.05) x log (rupture area)
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Table 4 Fault parameters used in Clawpack modeling

Model Center of shallowest  Center of shallowest Length  Width  Strike Dip Rake Slip

edge (longitude) edge (latitude) (km) (km) ©) ©) ©) (m)
1 132.92 —5.64 270 80 190 15 90 7
2 132.57 —6.96 270 80 200 15 90 8
3 131.86 —7.75 270 80 220 15 90 12
4 132.81 —6.22 270 80 190 15 90 7
132.27 —7.31 220 7
5 132.81 —6.22 270 80 190 15 90 7
132.27 —7.31 220 5
6 132.81 —6.22 270 80 190 15 90 6
132.27 —7.31 220 8
7 132.94 —5.22 270 80 190 15 90 8
132.81 —6.22 190 6
8 132.94 —5.22 270 80 190 15 90 6
132.81 —6.22 190 8
9 132.92 —5.64 540 80 190 15 90 12
131.86 —7.75 220 12

Poorly constrained shallow water bathymetry for the observation points in the Banda
Sea, and no data from near the likely epicenter of the 1852 earthquake, makes it difficult to
calculate tsunami wave amplification directly. Generally, tsunami amplification follows the
‘Plafker Rule of Thumb’, which states that the maximum tsunami run-up locally does not
exceed twice the height of the deformed seafloor offshore (Synolakis and Okal 2005).
However, for the 1852 event, there are no local observations where the ‘rule’ can be
applied. The highest waves observed at Banda Neira are 250-350 km away from the likely
rupture zone. The orientation of the fault plane is inferred from fault plane solutions of
instrumental events likely on the subduction interface. For seafloor deformation, we used a
variety of viable fault parameters after Okada (1985; Table 4).

3.3 Amplification factor

We investigated a range of amplification factors, or amplification errors due to low
bathymetric data, specifically by testing our model against the 2011 Tohoku earthquake
and tsunami. This event has measured run-up heights up to 38.5 m along the northeast
coast of Japan. Over 5000 locations were surveyed, which generated the largest tsunami
survey database ever for a single event (Mori et al. 2011).

The two-segment rupture model we used for the Tohoku event (Table 5) was con-
structed using the empirical equation of Wells and Coppersmith (1994). The 5197 on-shore

Table 5 Two-fault model for 2011 Tohoku earthquake calculated from Wells and Coppersmiths’ empirical
Eq. (1994)

Length (km) Width (km) Strike (°) Dip (°) Rake (°) Slip (m)
270 120 190 15 90 30
270 120 210 15 90 30
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Fig. 8 a Tsunami measurements
from Tohoku Earthquake in 2011
and simulated tsunami heights at
close offshore and open ocean
settings generated by our model
plotted against latitude.
Distribution of on shore tsunami
measurements (Mori et al. 2011)
are represented by black circles.
Simulated close offshore tsunami
heights are represented by red
circles. Simulated open ocean
tsunami heights are represented
by blue circles. b Distribution of
amplification factors from the
modeling of 2011 Tohoku
earthquake. Amplification factors
based on simulated close offshore
tsunami heights are represented
by box plot on the left.
Amplification factors based on
simulated open ocean tsunami
heights are represented by box
plot on the right
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Fig. 9 Various fault rupture models. M1-M9 shows the fault parameters simulated in Model 1-9
respectively (Table 4)

tsunami height measurements are divided into 20 groups, each corresponding to an open
ocean virtual gauge and a close-to-shore virtual ocean gauge. Our simulation of the 2011
Tohoku event simulates tsunami heights at these 42 ocean virtual gauges, ranging from
34°N to 44°N (Table 6). Amplification factors are identified as the on-shore tsunami
measurements over the corresponding simulated close-to-shore ocean tsunami heights and
the on-shore tsunami measurements over the corresponding simulated open ocean tsunami
heights (Table 6).

Our simulation of the Tohoku earthquake fails to identify the extreme shoaling at
Sendai Plain, Shizugawa, Hirota, Funakoshi and Taro (37 N to 41°N). Minor amplifica-
tions in elevations from open ocean waves to close-to-shore waves are shown to the north
and south of these areas (Fig. 8a). According to our results, the amplification factors based
on close-to-shore virtual ocean gauges have a range from 0.0006 to 12.62 (Fig. 8b). The
mean of these estimates is 2.17, while mode and median are 0.60 and 1.75, respectively.
The resulting data are highly positively skewed. The same pattern is observed in the
amplification factors based on open ocean virtual gauges with mean, mode and median of
2.01, 0.32 and 1.54, respectively. This dataset is again, highly positively skewed (Fig. 8b).
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Table 7 Tsunami observations and tidal gauges in 1852 earthquake

Station  Location Latitude  Longitude  Observed  Predicted tsunami
(°S) (°E) run-up heights from Model 5
heights with amplification factor
(m) of 2 (m)
1 Banda Neira: Fort Belgica —4.5320  129.8970 8.2 1.2
2 Lonthor: foot of mountains —4.5440  129.9080 8.2 1.3
3 Banda Neira: N coast —4.5066  129.8930 0 0.3
4 Lonthor: S coast —4.5601  129.8983 0 0.8
5 Pulu Ai —4.5162  129.7744 <1 0.5
6 Ambon: Ambon City —3.6900  128.1750 1.8 1.8
7 Ambon: Hila —3.7550  127.9250 <1 0.3
8 Ambon: Larike —3.5800  128.0000 <1 0.5
9 Saparua: SiriSori —3.6065  128.7060 <2 1.4
10 Saparua: Tijau/Saparua Bay  —3.5850  128.6650 3 3.0
11 Saparua: NE: Hatuana —3.5850  128.6907 <2 1.0
12 Saparua: W: Porto —3.4943  128.6200 <2 1.5
13 Saparua: N: Kulor —3.5030  128.5600 <2 2.0
14 Haruku: Hulaliu (NE) —3.5550  128.6000 <2 33
15 Haruku: Oma (S) —3.6500  128.4420 <2 0.6
16 Haruku: Wasu —3.6300  128.4930 <2 0.8
17 Nasalaut: Amet (N) —3.6453 128.8100 <2 1.2
18 Nasalaut: Akoon (SE) —3.6750  128.8200 <2 0.7
19 Nasalaut: Leinitu (NW) —3.6550  128.7500 <2 0.7

The scatter in the amplification estimates most likely reflects the high variability in
actual bathymetry, which is poorly constrained in the Banda Sea. Local shoaling of waves
is beyond the resolution of most bathymetric data sets. The problem is exacerbated by the
fact that there are limited observations of the 1852 event compared to the 2011 Tohoku
event. Our results are close to the ‘Plafker rule of thumb’ for an amplification factor of two
times the slip on the fault. However, this amplification factor of 2 is only applicable to
areas with no significant local shoaling.

4 Results

Nine models of various fault parameters were tested (Fig. 9; Table 3). Model 1 and Model
2 simulate a one-segment rupture at the most northern part and middle part of Tanimbar
Tough. Model 3 simulates a one-segment rupture at southernmost part of Tanimbar Tough
extending to the tip of Timor. Models 1, 2 and 3 are the basis to identify the possible
location of maximum slip. Model 4 is a modification of Model 2 with a two-segment
rupture including the bend at Tanimbar Islands. Models 5 and 6 use the same rupture area
as Model 4 with simple varying slip distributions. Models 7 and 8 are modifications of
Model 1, with alternative slip distributions. Model 9 simulates rupture of the entire Tan-
imbar Tough.
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Fig. 10 Snapshots of the first 60 min of tsunami propagation from Model 5 simulation of the 1852
earthquake. Positive tsunami heights are shown in red. Negative tsunami heights are shown in blue

Using the fault parameters and tsunami amplification factors discussed above yields a
minimum moment magnitude of 8.4 if the maximum slip occurs along the north or middle
segment of Tanimbar Trough, and 8.6 if the maximum slip occurs along the south segment
of Tanimbar Trough (Fig. 9). An amplification factor of 2 is applied at all virtual gauges
(Table 7). Simulated tsunami heights are main factor as we determine the best model.
However, with potentially extreme shoaling at Banda Neira and Lonthor Island, arrival
time of the first wave overrides the importance of simulated tsunami heights at these
locations.

Model 5, with maximum slip of 7 m at Kei Islands, produces the best fit between
predicted and observed tsunami heights (Table 7). Compared to all nine models, Model 5
generates the highest tsunami run-up at Ambon, Banda Neira and Saparua with the lowest
possible moment magnitude. Based on this model, a 1.6 m high tsunami wave arrives at
Ambon an hour after the quake and at a 2.7 m wave arrives at Saparua 50 min after the
quake (Figs. 10, 11).

The record for Banda Neira does not indicate the height of the initial wave that ‘crashed
in’ a quarter of an hour after the earthquake. It does document a dramatic withdrawal after
this wave, which is predicted by Model 5. The sea had to have dropped by at least 4 m in
order to empty out the bay as reported. It was not until 2 h after the earthquake that the
largest waves reaching 8 m arrived at Banda Neira (Wichmann 1918; van Vlief 1853).
Tsunami waves that are larger than the first wave to arrive are a common feature of
megathrust earthquakes (Atwater et al. 2005). However, existing tsunami models rarely
predict these waves (Geist 2010) and presently are mainly reliable for the first few wave
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Fig. 11 Computed tide gauge records and tsunami waveform for Banda Neira, Ambon city and Saparua
bay stations from Model 5

height and arrival times. Also, the accuracy of run-up height predictions is only as good as
the accuracy of the earthquake source parameters used in the models (Maclnnes et al.
2013; Arcas and Titov 2006). The lack of instrumental data associated with the 1852
earthquake requires that we use simple rupture scenarios and fault zone parameters. The
distribution of slip we use is limited to slip on two fault segments of equal size, which is
over simplified compared to slip distributions well constrained by instrumental data.

We varied fault parameters in the same procedure as Liu and Harris (2013) to try to
explain the discrepancy between observed and predicted wave heights at Banda Neira,
which indicates that the most sensitive parameter is slip. Increasing the fault dip angle from
10 to 15° and the length and width of the rupture zone to the maximum possible values
changes the wave height by <10 %.

S Conclusion
Eastern Indonesia is consistently struck by earthquakes, tsunamis and explosive volcanic
eruptions. Records we have compiled provide accounts of destructive geophysical events

dating back to 1608. While the rate of earthquakes has remained about the same throughout
that time, the size of earthquakes since 1878 in eastern Indonesia has decreased. No
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shallow earthquake greater than magnitude 8 or tsunami higher than 5 m has occurred
since 1852.

The 1852 earthquake was felt across most of eastern Indonesia and sourced a tsunami
that spread throughout the Banda Sea with run-up heights as up to 8 m. Our reconstructions
of this event indicate that the tsunami was likely caused by at least an Mw 8.4 earthquake
along the Tanimbar Trough. With convergence rates as high as 70-110 mm/a, enough
elastic strain energy has already accumulated along the many plate boundary segments in
the region to produce another megathrust earthquake and tsunami. Since the 1852 earth-
quake at least 10-15 m of potential slip has accumulated along the Tanimbar Trough
alone, the next 1852-like earthquake will affect a very different Indonesia than in the past,
one with 10 times more people that are mostly crowded into coastal urban centers.
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