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Analysis of zircons fromAustralian affinity Permian–Triassic units of the Timor region yield age distributionswith
large age peaks at 230–400Ma and1750–1900Ma,which are similar to zircon age spectra found in rocks fromNE
Australia and crustal fragments now found in Tibet and SE Asia. It is likely that these terranes, which are now
widely separated, were once part of the northern edge of Gondwana near what is now the northern margin of
Australia. The Cimmerian Block rifted from Gondwana in the Early Permian during the initial formation of the
Neo-Tethys Ocean. The zircon age spectra of the Gondwana Sequence of NE Australia and in the Timor region
are most similar to the terranes of northern Tibet and Malaysia, further substantiating a similar tectonic affinity.
A large 1750–1900 Ma zircon peak is also very common in other terranes in SE Asia.
Hf analysis of zircon from the Aileu Complex in Timor and Kisar Islands shows a bimodal distribution (both
radiogenically enriched and depleted) in the Gondwana Sequence at ~300 Ma. The magmatic event from
which these zircons were derived was likely bimodal (i.e. mafic and felsic). This is substantiated by the presence
of Permian mafic and felsic rocks interlayered with the sandstone used in this study. Similar rock types and iso-
topic signatures are also found in Permian–Triassic igneous units throughout the Cimmerian continental block.
The Permian–Triassic rocks of the Timor region fill syn-rift intra-cratonic basins that successfully rifted in the Ju-
rassic to form the NWmargin of Australia. This passive continental margin first entered the Sunda Trench in the
Timor region at around 7–8 Ma causing the Permo-Triassic rocks to accrete to the edge of the Asian Plate and
emerge as a series ofmountainous islands in the young Banda collision zone. Eventually, the Australian continen-
tal margin will collide with the southern edge of the Asian plate and these Gondwanan terranes will rejoin.

© 2015 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Keywords:
Banda arc
Timor
Detrital zircons
Gondwana
Arc-continent collision
1. Introduction

Asia is an evolving supercontinent built mostly of continental frag-
ments rifted from the former supercontinent of Gondwana (e.g.
Metcalfe, 2013). Some of these fragments were rifted from what is
now the passive margin of northern Australia. Petrographic and
paleocurrent studies of the Gondwanan affinity sedimentary rocks of
northern Australia indicate they were derived mostly from the north
where continental fragments of Gondwana were subsequently rifted
away (Bird, 1987; Bird and Cook, 1991; Zobell, 2007; Harris, 2011). Var-
ious paleogeographic reconstructions attach the Lhasa, Sibumasu
(Siam–Burma–Malaysia–Sumatra), East Java and Borneo terranes to
NW Australia at various times (Metcalfe, 2002; Ferrari et al., 2008;
Metcalfe, 2011; Gibbons et al., 2015). This paper aims to test the veracity
of these reconstructions by combining the methods of sandstone
ology, Curtin University, Perth,
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petrography and U–Pb analysis of detrital zircons to address the ques-
tion of what rifted away from the NWmargin of Australia.

Large sections of the strata making up the NW passive margin of
Australia are accreted to the Banda Arc via Late Miocene to present
arc-continent collision (i.e. Carter et al., 1976).We have analyzed petro-
logical relations and U–Pb ages of detrital zircons fromGondwana affin-
ity sandstones and metamorphic rocks in the Banda Arc in order to
determine a provenance and age fingerprint to compare with various
terranes in Asia.

2. Description of the Gondwana Sequence

Threemajor tectono-lithic units make up the Banda Arc collision, viz.
the Banda Terrane and two sedimentary successions separated by a Late
Jurassic breakup unconformity, known together as the Gondwana Se-
quence. The Banda Terrane consists of mostly forearc basement units of
Asian affinity that form the upper plate of the collision. It occupies the
highest structural level in the Banda Arc collision (Harris, 2006;
Standley and Harris, 2009). Subcreted beneath the Banda Terrane is the
Gondwana Sequence, which makes up the Australian passive margin
V. All rights reserved.
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lower plate of the arc-continent collision (Fig. 2). Pre- and syn-breakup
strata below the unconformity formed during the Pennsylvanian to
Jurassic while Australia was part of Gondwana and are known as the
Gondwana Mega-sequence (Audley-Charles, 1968; Harris et al., 2000;
Haig et al., 2008). The Australian PassiveMarginMega-sequence overlies
the unconformity.

The recent subduction of the Australian passive margin beneath the
Banda Terrane caused the two mega-sequences that comprise the pas-
sive margin to detach and accrete to the upper plate. The detachment
zonemore or less follows the thickWai Luli Shale immediately beneath
the Jurassic breakup unconformity. The passive margin mega-sequence
above the unconformity detaches at deformation front to form a classic
imbricate stack (Charlton et al., 1991; Harris, 1991, 2011). The underly-
ing Gondwana mega-sequence is carried further down the subduction
zone where it eventually detaches to form a duplex system under the
Banda Terrane (Harris, 1991; Harris et al., 1998).

The stratigraphy and sedimentology of Gondwana mega-
sequence units in the Banda Arc are described by many previous
studies dating back to early Dutch expeditions of late 19th and
early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other
studies of these rocks include: Simons (1939), Gageonnet and
Lemoine (1958), Audley-Charles (1968), Gianni (1971), Grady and
Berry (1977), Charlton (1989), Bird and Cook (1991), Hunter
(1993), Barkham (1993), Sawyer et al. (1993), Prasetyadi and
Harris (1996), Harris et al. (1998, 2000, 2009), Charlton (2002),
Charlton et al. (2009), Vorkink (2004), McCartain and Backhouse
(2006), Kaneko et al. (2007), Zobell (2007), Haig et al. (2008), and
Major (2011). From these studies it is evident that Gondwana
Mega-sequence units exposed in the Banda Collision and drilled off-
shore on the Australian margin are best divided into two series, the
Permian–Triassic Aileu-Maubisse Series, and the Permian–Jurassic
Kekneno Series (Lemoine, 1959; Audley-Charles, 1968; Rosidi et al.,
1981; Sawyer et al., 1993). The stratigraphic relationship between
the two series is ambiguous due to the fact that in most places the
Aileu-Maubisse series is thrust over the Kekneno Series.
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2.1. Aileu Complex

The Aileu Complex is the metamorphosed part of the Aileu-
Maubisse Series. It is found in several places along the north coast of
Timor as far east as Manatutu (Fig. 1). It is also exposed on the island
of Kisar (Richardson and Blundell, 1996; Harris, 2006; Major et al.,
2013) and likely on other outer-arc islands to the east based on litholog-
ical similarities (Kaneko et al., 2007). The Aileu Complex consists of a
protolith of Permian–Triassic, and possibly Jurassic, psammite and lime-
stone, and basalt, rhyolite, tuffaceousmaterial and gabbroic and dioritic
plutons (Berry and McDougall, 1986; Prasetyadi and Harris, 1996;
Harris, 2011). These units are metamorphosed into pelitic schist and
gneiss, marble, phyllite and amphibolite. Metamorphic grade varies be-
tween lower greenschist to upper amphibolite facies (Berry and Grady,
1981). Some high temperature metamorphismmay have occurred dur-
ing the rifting event that formed the edge of the Australian continental
margin. This event is overprinted by medium to high-pressure meta-
morphism during Late Miocene onset of collision in central Timor
(Berry and McDougall, 1986; Harris, 1991; Harris et al., 2000).
2.2. Maubisse Formation

The Maubisse Formation consists of a distinct red, crinoidal lime-
stone, shale and volcanic rocks that were deposited mostly during the
Permian with ages ranging from latest Pennsylvanian to Triassic, and
represents the oldest rocks exposed in the Banda Orogen (de Roever,
1940; Audley-Charles, 1968; Davydov et al., 2013). Pillow lavas
found within the Maubisse Formation have geochemical signatures of
within-plate and ocean-ridge basalt, which is interpreted as
representing the onset of rifting (Berry and Jenner, 1982). Clastic sedi-
mentary units found in the Maubisse Formation show fining in grain
size toward the south (Carter et al., 1976). Rocks similar to theMaubisse
Formation are documented on the Sahul Shoals of the undeformed
Australian continental margin (Grady and Berry, 1977).
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2.3. Atahoc Formation

The Atahoc Formation is most likely transitional with the Maubisse
Formation and is Permian in age. This formation is mainly shale with
some fine-grained sandstone and volcanic rocks. The basal contact
has not been found and the upper contact is amygdaloidal basalt
(Sawyer et al., 1993).
2.4. Cribas Formation

The Permian–Triassic? Cribas Formation is dominated by organic
shale in the lower section and inter-bedded to massive sandstone
units in the upper part. This sandstone is interpreted as being part
of a submarine fan complex (Hunter, 1993) deposited on a shallow
shelf (Bird, 1987). Another distinguishing characteristic is the
presence of ironstone nodules indicative of anoxic conditions
(Charlton et al., 2002).
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2.5. Niof Formation

The Triassic Niof Formation is recognized in West Timor and may
comprise the upper part of the Cribas Formation in East Timor. It con-
sists of thin, inter-bedded claystone, brown, gray and black shale, and
sandstone. Bird and Cook (1991) interpreted the deposition of the
Niof as turbidites in shallow to deep water. The upper portion of the
Niof is interbedded with the Aitutu formation (Sawyer et al., 1993).
2.6. Aitutu Formation

The Triassic Aitutu Formation is the most distinctive unit of the
Gondwana Sequence. It is a rhythmically bedded white to pink lime-
stone with thin inter-beds of dark gray shale. The Aitutu Formation
was deposited on an open marine outer shelf (Sawyer et al., 1993). It
is the most lithologically distinct unit of the Kekneno Series and is
used as a marker unit for structural reconstructions (Harris, 2011).
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Table 1
Sample age and lithologic characteristics and GPS location.

Sample Rock unit Lithology Stratigraphic age Locality Latitude (S) Longitude (E) U–Pb age (Ma) Type

deg min s deg min s

KIS05 Aileu Complex Schist Permo-Triassic Kisar 8 3 4.7 127 11 5.3 b300 Ma D
MT48 Aileu Complex Schist Permo-Triassic Kisar 8 1 58.5 127 10 35.4 b300 Ma D
09HS21-4 Aileu Complex Schist Permo-Triassic Timor 8 31 14.0 125 36 26.5 b300 Ma D
TL-89 Aileu Complex Gabbro Permo-Carb Boundary Timor 8 29 10.2 125 57 7.0 7.5 ± 0.4⁎, ~260 Ma Ig
TL-88b Aileu Complex Gabbro Permo-Carb Boundary Timor 8 29 12.9 125 57 10.3 8.4 ± 0.57⁎, ~245 Ma Ig
TL-23b Aileu Complex Migmatite Permo-Carb Boundary Timor 8 30 2.8 125 56 39.0 301 ± 3 Ig
EZ-151 Gondwana Sequence Sandstone Triassic Timor 8 55 56.4 125 54 12.5 b250 Ma D
SV-9 Gondwana Sequence Sandstone Triassic Savu 10 34 48.8 121 44 32.3 b250 Ma D
SV-28C Gondwana Sequence Sandstone Triassic Savu 10 36 5.0 121 52 3.6 b250 Ma D
SV-164 Gondwana Sequence Sandstone Triassic Savu 10 36 37.8 121 49 36.2 b250 Ma D
SV-159 Gondwana Sequence Sandstone Triassic Savu 10 33 6.4 121 51 32.0 b250 Ma D
SV-155A Gondwana Sequence Sandstone Triassic Savu 10 36 35.1 121 51 40.1 b250 Ma D

D: minimum depositional age based upon 2nd youngest zircon.
Ig: weighted average.
⁎ Metamorphic age.
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2.7. Babulu Formation

The Triassic Babulu Formation is only recognized in central Timor
(Gianni, 1971; Bird and Cook, 1991) and Savu (Vorkink, 2004), and
may comprise the base of the Wai Luli Formation in East Timor. The
Babulu Formation consists of sandstone, shale and silts with somemas-
sive sandstone beds. Deposition of this unit most likely occurred in a
proximal near shore to shelf break (Sawyer et al., 1993) through turbid-
ity currents from a prograding delta (Bird and Cook, 1991).
2.8. Wai Luli Formation

The Late Triassic to Jurassic Wai Luli Formation is a thick succession
of mostly smectite-rich mudstone (Harris et al., 1998) with some well-
beddedmarl, calcilutite,micaceous shale and quartz arenite. Toward the
top of the formation are conglomerate and red shale units (Audley-
Charles, 1968). Ironstones are very common and form lag deposits on
the surface. In the Banda collision zone the thick, mechanically weak
Fig. 3. Cathode luminescence (CL) image of zircon with outline o
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Wai Luli mudstone serves as a major decollement for imbrication of
the overlying Australian Passive Margin Sequence; and as a roof thrust
for structural duplexes of the Gondwana Sequence (Harris, 1991). It
also is the source of much of themélangematrix found along the suture
zone between accreted Australian continental material and structurally
overlying Asian affinity arc terranes (Harris et al., 1998).

3. Methods

The source regions for Gondwana Sequence sandstones were also
investigated by petrographic studies of grain types and textures, and
U–Pb age analyses of detrital zircon grains. The petrographic analysis
(reported in Zobell, 2007) includes 16 samples of Triassic Gondwana
Sequence sandstone collected from Savu, West Timor and East
Timor.

U–Pb zircon age andHf analyseswere conducted on 5 sandstone and
4 metamorphic rock samples from Savu, Timor and and Kisar (Fig. 2).
These samples were crushed using a jaw crusher and the b500 μm
size fraction was magnetically separated using the Carpco and Frantz
f typical U–Pb (40/50 μm), and Hf (50 μm) analytical spots.
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magnetic separators. Heavy minerals were separated using wifely table
and/or tetraboroethelene. Zircon grains were then handpicked for anal-
ysis. Cathode luminescence and backscatter imageswere acquired using
a Hitachi 3400N SEM/Catan Chroma CL system and a Cameca SX-50
electron microprobe, respectively.

In situ U–Pb isotope analyses for individual grains were per-
formed using a Nu Plasma HR MC-ICPMS coupled to a New Wave
193 nmArF and a PhotonMachines G3 193 nmArF laser ablation sys-
tem at the University of Arizona with ablation done in a He carrier
gas using a 40 μm diameter spot size. Laser fluence of ~4 J/cm2 at
8 Hz for 30 s of integration. Detailed U–Pb analytical procedures
are described by Gehrels et al. (2008). Samples were analyzed in
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sets of 9 to 12 analyses, which include 5 to 8 unknown spots, brack-
eted beginning and end by a pair of analyses of an in house Sri Lanka
zircon standard (Gehrels et al., 2008). The R33 zircon standard was
also analyzed at the beginning and end of each sample set as an inde-
pendent control on reproducibility and instrument stability. Concor-
dance is defined for ages above 700 Ma using the ratio of 206Pb/238U
and 207Pb/206Pb ages, and 206Pb/238U and 207Pb/235U ages are used
for those younger than 700 Ma. The accepted ages were selected
from a 95% concordant subset, wherein the 206Pb/238U and
207Pb/206Pb ages are used for zircons younger and older than
700 Ma, respectively; this age was chosen because there is a natural
gap in the ages of the zircons in these samples. Visualization of U–Pb
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concordia and zircon ages is achieved using Isoplot 4.15 (Ludwig,
2003) and densityplotter (Vermeesch, 2012). GPS locations of sam-
ples are presented in Table 1.

Hf isotope analyseswere performedwith aNuPlasmaHRMC-ICPMS
coupled to a Photon Machines G3 193 nm ArF laser ablation system. In-
strument settings were established first by analysis of 10 ppb solutions
of JMC475 and a Spex Hf solution, and then by analysis of 10 ppb solu-
tions containing Spex Hf, Yb, and Lu. The mixtures range in concentra-
tion of Yb and Lu, with 176(Yb + Lu) up to 70% of the 176Hf. When all
solutions yield an accurate 176Hf/177Hf ratio, instrument settings are op-
timized for laser ablation analyses and seven different standard zircons
(Mud Tank, 91500, Temora, R33, FC52, Plesovice, and Sri Lanka) are an-
alyzed. These standards are included with unknowns on the same
epoxy mounts. Laser ablation analyses were conducted with a laser
beam diameter of 50 μm, with ablation pits located on top of the U–Pb
analysis pits or on an adjacent spot of similar zonation. CL images
were used to ensure that the ablation pits do not overlap multiple age
domains or inclusions (Fig. 3). Each acquisition consisted of one 40-
second integration on backgrounds (on peaks with no laser firing)
followed by 60 one-second integrations with the laser firing. Using a
typical laser fluence of ~5 J/cm2 and pulse rate of 7 Hz. Sets of each stan-
dard was analyzed once for every ~15 unknowns.

Isotope fractionation was accounted for using the method of
Woodhead et al. (2004): βHf is determined from the measured
179Hf/177Hf; βYb is determined from the measured 173Yb/171Yb (except
for very low Yb signals); βLu is assumed to be the same as βYb; and an
exponential formula is used for fractionation correction. Yb and Lu in-
terferences were corrected by measurement of 176Yb/171Yb and
176Lu/175Lu (respectively), as advocated by Woodhead et al. (2004).
Critical isotope ratios are 179Hf/177Hf = 0.73250 (Patchett and
Tatsumoto, 1980); 173Yb/171Yb = 1.132338 (Vervoort et al. 2004);
176Yb/171Yb = 0.901691 (Vervoort et al., 2004; Amelin and Davis,
2005); 176Lu/175Lu = 0.02653 (Patchett, 1983). All corrections are
done line-by-line. For very low Yb signals, βHf is used for fractionation
of Yb isotopes. The corrected 176Hf/177Hf values are filtered for outliers
(2-sigma filter), and the average and standard error are calculated
from the resulting ~58 integrations. There is no capability to use only
a portion of the acquired data.
Please cite this article as: Spencer, C.J., et al., Provenance of Permian–Triassic Gondwana Sequence units accreted to the Banda Arc in the Timor
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The 176Hf/177Hf at time of crystallization is calculated from measure-
ment of present-day 176Hf/177Hf and 176Lu/177Hf, using the decay constant
of 176Lu (λ=1.867e− 11) fromScherer et al. (2001) and Söderlund et al.
(2004). The uncertainty propagation of the epsilon notation also includes
the uncertainty of the 207Pb/206Pb crystallization age, as it is time integrat-
ed. Although this may be an over propagation of uncertainty, we prefer
this conservative approach for the epsilonnotationwhendefining specific
fields of similar εHf compositions. Uncertainties that incorporate the crys-
tallization age uncertainty are on average 50% (1σ=20%) larger than un-
certainties that do not consider the crystallization age uncertainty.

4. Results

4.1. Petrography

Point count analysis of Gondwana Sequence sandstones from
Savu andWest and East Timor (initially reported by Zobell, 2007) in-
dicates that they are quartz wackes to lithic wackes (Fig. 4a) on the
classification diagram ofWilliams et al. (1982). On discrimination di-
agrams of Dickinson et al. (1983) the sandstones plot as recycled
orogen provenance (Fig. 4b). In terms of texturally maturity the
sandstones we analyzed are immature, and are characterized by
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large, sub-angular to sub-rounded framework grains (Fig. 4c). Imma-
turity is also indicated by significant amounts of unaltered twinned
feldspar (Fig. 4d), fresh mica (Fig. 4e), lithic fragments, and high per-
centages of matrix. These data preclude a far-traveled source for
most of the detrital zircons.

4.2. Zircon U–Pb analysis

Zircons were separated in 5 sandstone and 4 metamorphic rock
samples of the Gondwana Sequence in the Timor region. These zircon
grains provide the first constraints for depositional provenance and
maximum age of deposition for various sections of the Gondwana Se-
quence (Table 1). Four of these samples are from Triassic units exposed
on the island of Savu (Indonesia), one is from Triassic sandstone in East
Timor and the other four are from the Aileu Complex in East Timor and
Kisar Island (see Fig. 2). Most of the grains are amber to clear or pink to
mauve in color with variable amounts of abrasion and rounding. Prote-
rozoic zircons vary in color, but Paleozoic zircons are only amber to
clear. Both abraded and pristine zircons are present, although there is
no apparent relationship between abrasion and age. Zircons from nine
samples are variably concordant (Figs. 5 and 6) and those that are b5%
discordant cluster into two main populations at ~300 Ma and
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Fig. 8. a) Pb/U concordia diagram of ages (Ma) of zircon grains from samples TL89 and
TL88b constructed with the use of Isoplot (Ludwig, 2003). Uncertainties are shown at
the 2σ level. 40 and 50 μm spots are displayed in gray and black, respectively. b) Pb/U
concordia diagram of ages (Ma) of the youngest zircon ages analyzed with 50 μm spots.
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The oldest plateau of ages represents the crystallization of a primary U-bearing phase in
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~1875 Ma (Fig. 7). Several other small peaks are found in some grains
between these two age groups. The peak at ~300 Ma includes a spread
of discordant ages from mid-Carboniferous to Jurassic (~330 to
150 Ma).

Sample TL23b was collected from a leucosome pod within a
migmatitic unit in the Aileu Complex. Zircons within this leucosome
(17/19 analyses) give a weighted average of 300.8 ± 3.3 Ma
(MSWD= 1.5) (Fig. 6). This age implies that there was partial melting
associated with the rifting episode in this region, although there is no
evidence of partial melting during the Miocene collision of Australia
(see also Berry and Grady, 1981).

Two amphibolite samples (TL89, TL88b) from the Aileu Complex
were analyzed using both 40 μm and 50 μm diameter spots. Both sets
of data reveal a suite of ages between ~300 Ma and ~7 Ma that lie
along a poorly defined discordia. The weighted averages of oldest clus-
ters of ageswhose 206Pb/238U and 207Pb/235U uncertainties overlapwith
the concordia are 266 ± 4 (n= 5; MSWD= 1.7) and 256 ± 3 (n= 4;
MSWD = 0.33) (206Pb/238U age) in sample TL88b and 269 ± 4 and
244 ± 13 (n = 3; MSWD= 2.5) in sample TL89 (Fig. 8).

4.3. Hf analysis

Hf isotopic analyses of three detrital zircon samples from Kisar (KIS05
andMT4891) and Timor (09-HS21-4) have initial εHf values of 11 to−21
(Fig. 9). The pre-400 Ma zircons have εHf values of 5 to −10 whereas
post-400 Ma zircons have only subchondritic εHf values.

Very young zircons (~7 Ma) from amphibolite samples (TL88b,
TL89) have initial εHf values of 4.2 to −2.3 although this is likely a
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maximum estimate given the potential for lead loss in the ages used to
calculate the initial εHf. Hf isotopic analyses of zircon grains from the
Aileu Complex migmatite (sample TL23b) have initial εHf values of 11
to 16.

5. Discussion

5.1. Provenance of the Gondwana Sequence

Samples of the Gondwana Sequence on the islands of Savu, Timor,
and Kisar have dominant zircon U–Pb age peaks at ~300 and
~1875 Ma with minor Neoproterozoic to Archean subpopulations
(Fig. 7). The ~1875 Ma population was likely derived from the North
Australian Craton within the Kimberly Basin, and Halls Creek and Pine
Creek orogens (Tyler et al., 2005; Downes et al., 2007; Worden et al.,
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2005; Zobell, 2007; Korsch et al., 2009; Sevastjanova et al., 2011; Gehrels et al., 2011; Ely et al.
2012).
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2008; Lewis and Sircombe, 2013). Additionally, the few pre-2.4 Ga de-
trital zircons were also likely derived from the North Australian Craton
(Downes et al., 2007; Cawood and Korsch, 2008). Potential sources for
the few Meso- to Neoproterozoic detrital zircons have been identified
within the Musgrave Province, Albany-Fraser Orogen, and Pinjarra
Orogen of central and western Australia. The presence of zircons from
Western Australia was likely transported along the west and north
coast prior to convergence with the Pacific Plate (Lewis and Sircombe,
2013). However, it should be noted that the proportions of Meso- and
Paleo-Proterozoic zircons seen along coastal Western Australia and
the northwest Australian Shelf do not match that of the samples from
Savu, Timor, and Kisar. The mismatch in zircon age populations might
reflect a different provenance than proposed or idiosyncrasies that
would be resolved with a greater number of analyses. It should be fur-
ther noted, that despite the inclusion of potentially far traveled detrital
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zircon populations, the presence of sub-angular grain fragments along
with pristine mica flecks indicate that any far-traveled detrital zircon
populations were reworked along a rift shoulder and deposited in a
proximal basin.

Paleoproterozoic zircon grains, with minor modes at 1.8 to 1.9 Ga,
are found in nearly every sample. Smaller population of Neo- and
Mesoproterozoic are also present and three of the samples (SV-9,
SV28C, 09HS21-4) also contain minor Archean (~2.5 Ga) grains. The
early Permian maximum depositional age of the Aileu Formation in-
ferred by the youngest detrital zircon age peak (~300 Ma) is consistent
with that proposed by Brunnschweiler (1978), who reported Permian
ammonite fossils in phyllitic rocks.

Zircons in amphibolite samples TL88b and TL89 show incomplete
lead loss from ~260 Ma to ~7 Ma (Fig. 8). Based upon the mafic nature
of these samples and the incomplete replacement of the zircon, we pos-
tulate the cores of these grains were initially baddeleyite hosted in gab-
bro, which was replaced by zircon during ~7 Ma collision-related
metamorphism and the influx of Si-rich fluids. Although the zircons
also have elevated U/Th ratios (3.1 average) recent studies imply that
the U/Th ratio of recrystallized zircon primarily reflects the composition
of the fluids responsible for driving the recrystallization (Harley et al.,
2007 and references therein). Alternatively, these Permian-age cores
are simply heavily altered zirconwith a pristine oscillatory zoned zircon
rims. It is likely themafic protolith for the amphibolite is a gabbro as ar-
gued from faint primary igneous textures.We interpret this unit as hav-
ing been emplaced along the shoulder of a rift resulting from the
Permian separation of the Cimmerian block from Gondwana.

Hf isotopes in the detrital zircon samples display variable radiogenic
enrichment with average Paleoproterozoic to Neoarchean depletedman-
tlemodel ages (Fig. 9). An exception to this is seen in the apparent bimod-
al distribution of εHf values in the ~300 Ma dominant age peak. The end
members of this bimodal distribution lie at the +16 and –22, which cor-
respond to the depleted mantle and a depleted mantle model age of
~2600 Ma, respectively. This unique distribution implies that these zir-
cons were derived from a bimodal magmatic suite, which likely formed
during rifting.

Evidence for this bimodal magmatic event is seen in the Gondwana
Sequence where minor amounts of rhyolite and granite are accompa-
nied by larger volumes of alkali basalt (Audley-Charles, 1968;
Wopfner and Jin, 2009). These compositions typify continental rifting
events (McKee, 1970). Furthermore, the ~260 Ma upper intercept age
of the metagabbro samples in this study is similar to the 255 ± 39 Ma
apatite fission track age of Maubisse tuff (Harris et al., 2000) and
270 ± 3 Ma zircon U–Pb age of Maubisse Trachyandesite (Kwon et al.,
2014) thatmay represent the same suite of bimodal volcanic rocks asso-
ciated with the rifting of the Cimmerian block.

A comparison of the detrital zircon age spectra from the Gondwana
Sequence of Savu, Timor, and Kisar with detrital zircon age spectra from
regions in Australia and Asia provide important context for potential lo-
calities fromwhich zirconsmay have been derived (Fig. 10). Important-
ly, the sedimentary basins of the NW Australian Shelf are the most
proximal to the Banda Arc and yet show very different age spectra im-
plying significantly different provenance (Lewis and Sircombe, 2013).
In Tibet, the SongpanGanzi Terrane shows a strong 1850Ma population
similar to that of the Gondwana Sequence, but lacks the strong 300–
370 Ma age peak (Gehrels et al., 2011). Similarly, detrital zircons from
the Malay peninsula have a dominant age peak younger than that of
the Gondwana Sequence (Sevastjanova et al., 2011). The 300–370 Ma
age population seen in the Gondwana Sequence is most similar to the
rocks of the New England Orogen in NE Australia and New Guinea
(van Wyck and Williams, 2002; Korsch et al., 2009); however
Paleoproterozoic zircon ages are conspicuously absent from these re-
gions and appear to have an Asian affinity relating to Sibumasu (see
Wang et al., 2014; Gardiner et al., 2015).

Our story of theGondwana Sequence comes full circlewhen thefinal
remnants of the Tethys Ocean close and theGondwana Sequence is both
Please cite this article as: Spencer, C.J., et al., Provenance of Permian–Trias
region: Constraints from zircon U–Pb and Hf isotopes, Gondwana Researc
subducted beneath and accreted to the Banda Arc (Harris et al., 2000;
Harris, 2006, 2011). Zircons from the meta-gabbros in this study have
imprecisely constrained the metamorphism associated with this event
at ~7 Ma (Fig. 10).
6. Conclusions

From the data presented in this study, we find that:

1. The Permian–Triassic Gondwana Sequence was deposited in
intracratonic basins of Gondwana during the early breakup stage of
Australian passive continental margin development.

2. These sediments, with the accompanying bimodal volcanism, repre-
sent proximal rift shoulder deposits thatwere lain down shortly after
the initiation of Tethys Ocean rifting in the early Permian era and are
now present in exhumed thrust sheets accreted to the Banda Arc
complex.

3. Sandstone of the Gondwana Sequence is mostly immature and was
derived predominantly from rocks to the north of the Australia that
may correlate with fragments of the Cimmerian Block found in
Tibet and SE Asia.

4. Zircons in meta-gabbro provide age estimates for both the rifting of
Cimmeria from Gondwana in the grain cores (~300 Ma) as well as
the collision of the Banda Arc with Australia (~7 Ma).

5. εHf of detrital zircons provides evidence for bimodal rift-related
magmatism with one cluster of data near the depleted mantle and
another with Neoarchean depleted mantle model ages.
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