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Preface

Guidebooks have been part of the exploration of the American West since Oregon Trail days. Geologic
guidebooks with maps and photographs are an especially graphic tool for school teachers, University classes,
and visiting geologists to become familiar with the territory, the geologic issues and the available references.

It was in this spirit that we set out to compile this two-volume set of field trip descriptions for the Annual
Meeting of the Geological Society of America in Salt Lake City in October 1997. We were seeking to produce
a quality product, with fully peer-reviewed papers, and user-friendly field trip logs. We found we were buck-
ing a tide in our profession which de-emphasizes guidebooks and paper products. If this tide continues we
wish to be on record as producing “The Last Best Geologic Guidebook.”

We thank all the authors who met our strict deadlines and contributed this outstanding set of papers. We
hope this work will stand for years to come as a lasting introduction to the complex geology of the Colorado
Plateau, Basin and Range, Wasatch Front, and Snake River Plain in the vicinity of Salt Lake City. Index maps
to the field trips contained in each volume are on the back covers.

Part 1 “Proterozoic to Recent Stratigraphy, Tectonics and Volcanology: Utah, Nevada, Southern Idaho and
Central Mexico” contains a number of papers of exceptional interest for their geologic synthesis. Part 2
“Mesozoic to Recent Geology of Utah” concentrates on the Colorado Plateau and the Wasatch Front.

Paul Link read all the papers and coordinated the review process. Bart Kowallis copy edited the manu-
scripts and coordinated the publication via Brigham Young University Geology Studies. We would like to
thank all the reviewers, who were generally prompt and helpful in meeting our tight schedule. These included:
Lee Allison, Genevieve Atwood, Gary Axen, Jim Beget, Myron Best, David Bice, Phyllis Camilleri, Marjorie
Chan, Nick Christie-Blick, Gary Christenson, Dan Chure, Mary Droser, Ernie Duebendorfer, Tony Ekdale,
Todd Ehlers, Ben Everitt, Geoff Freethey, Hugh Hurlow, Jim Garrison, Denny Geist, Jeff Geslin, Ron Greeley,
Gus Gustason, Bill Hackett, Kimm Harty, Grant Heiken, Lehi Hintze, Peter Huntoon, Peter Isaacson, Jeff
Keaton, Keith Ketmer, Guy King, Mel Kuntz, Tim Lawton, Spencer Lucas, Lon McCarley, Meghan Miller,
Gautam Mitra, Kathy Nichols, Robert Q. Oaks, Susan Olig, Jack Oviatt, Bill Perry, Andy Pulham, Dick Robison,
Rube Ross, Rich Schweickert, Peter Sheehan, Norm Silberling, Dick Smith, Barry Solomon, K.O. Stanley,
Kevin Stewart, Wanda Taylor, Glenn Thackray and Adolph Yonkee. In addition, we wish to thank all the dedi-
cated workers at Brigham Young University Print Services and in the Department of Geology who contributed
many long hours of work to these volumes.

Paul Karl Link and Bart J. Kowallis, Editors



Sequence Architecture and Stacking Patterns
in the Cretaceous Foreland Basin, Utah:
Tectonism versus Eustasy

P SCHWANS
Exxon Exploration Company, PO. Box 4778, Houston, Texas 77060-4778

K.M. CAMPION
Exxon Production Research Company, PO. Box 2189, Houston, Texas 99252-2189

ABSTRACT

The field trip examines the variations in depositional architecture, stacking patterns, and unconformity
expression in strata deposited at the Cretaceous foreland basin margin in central Utah. Two sediment accom-
modation zones are identified. A zone proximal to the thrust front (<150 km distance) with high basin subsi-
dence and sediment accommodation features predominantly alluvial deposits and sequences bounded by
merged 3rd-order and angular unconformities; airy-isostatic subsidence dominated here. In a second zone
located farther basinward (>150 km distance) basin subsidence and sediment accommodation decrease to the
east and the basin fill is predominantly transitional alluvial to shallow-marine. Sequences are bounded by high-
er frequency unconformities and their correlative conformities; flexural subsidence dominates here and defines
a ramp. Sequence expression and stacking patterns are explained within an accommodation cycle of basin sub-
sidence and sea level change. This can be are used to better understand the influence of structuring versus

eustasy on depositional architecture.

INTRODUCTION

Sequence stratigraphy concepts were originally devel-
oped from shallow-marine successions along passive mar-
gins where subsidence increases basinward, shelf edges
separate shallow-water from deep-water environments, and
tectonic events are muted (Vail et al., 1977, 1984; Haq et
al., 1987, 1988, Jervey, 1988; Posamentier and Vail, 1988;
Posamentier et al., 1988). Over the last several years
sequence-stratigraphy has been increasingly applied and
tested in foreland basins, where basin subsidence increases
toward an active fold belt, strata are deposited across a
ramp of uniform dip, and deep-water environments are
absent. Consequently, the applicability of sequence stratig-
raphy concepts in foreland basins and the impact of tecton-
ism on stratal patterns have been scrutinized; examples,
among others, are the work by Weimer (1984), Jervey
(1988), Jordan and Flemings (1991), Schwans (1990, 1991,
1995), Walker and Eyles (1991), Posamentier et al., (1992),
Devlin et al., (1993), Gardner (1993), Martinsen, et. al.,
(1993), and Leithold (1994).

PREVIOUS WORK

Previous stratigraphic work on the transitional alluvial to
shallow-marine foreland basin strata in central Utah, com-
monly referred to as Indianola Group, utilized formational
attributes and sparse biostratigraphic strata. Pioneering
studies are those of Spieker and Reeside (1925) and Spieker
(1946, 1949). More recent examples are the works of Hale
and Van De Graff (1964), Gill and Hail (1975), Cobban
(1976), Lawton (1982, 1983, 1985), Ryer (1981), Ryer and
McPhillips (1983), Fouch et al., (1983), and more recently
Franczyk et al., (1992), among others. A different approach
was taken by Schwans (1988a, 1988b, 1995), who placed
facies and similarities in stratal successions and stacking
patterns into a biostratigraphic and sequence-stratigraphic
framework; Figure 1 shows the resulting chronostratigraphy.
The hiatus of the unconformities and the age of sequences
in the chart are based on biostratigraphic and absolute age
data discussed in detail in Schwans (1985a, 1986a, 1988a,
1988b, 1995); discussed are also the relationship between
the sequence framework (Fig. 1) and the existing formation
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stratigraphy. The curve of coastal onlap and the ages of
sequence boundaries and downlap surfaces from Haq et al.,
(1987) are included to provide comparison between the
cyclicities observed in the foreland basin and at passive
margin worldwide. Other studies on Cretaceous sequence
stratigraphy in the foreland basin include, among others,
Schwans (1986b, 1989, 1995), Vail and Bowman (1987),
Aubrey (1989), Shanley and McCabe (1991, 1995), Van
Wagoner (1991a, 1991b, 1995), and Van Wagoner et al.,
(1990). Figure 2 is a location map of the field trip area with
the stops indicated.

STRUCTURE AND FORELAND
BASIN ZONATION

Structure

The field trip area straddles a major structural transition
zone the Cordilleran hingeline. Picha (1986) describes the
hingeline as a zone that separates thick cratonic crust to the
east from thinned, late Proterozoic-rifted crust in the west.
Paleozoic miogeoclinal strata above basement thicken west-
ward of the hingeline from 1000 m beneath the Wasatch
Plateau to 11,000 m at the Utah-Nevada border (Standlee,
1982). The western portion of the Cretaceous foreland
basin lies within this hinge zone (Schwans, 1988a, 1988b,
1995). Figure 3 shows the structural elements that influ-
enced the configuration of the foreland basin in Utah; these
are: (1) Proterozoic-rifted basement structures, (2) base-
ment lineaments, and (3) Cretaceous-Tertiary thrust-fold
structures.

Basement highs defined the position of the Mesozoic
thrust ramps and the Cenozoic thrust-cored anticlines (All-
mendinger et al., 1986, 1987; Lawton et al., 1994; Schwans,
1987a, 1987b, 1995). Intervening basement lows influenced
the geographic configuration and position of alluvial to
lacustrine Cenozoic basins. The eastern margin of the hinge
zone is defined by the Ephraim Fault (EF in Fig. 3); base-
ment is downthrown to the west to 9 km depth (Allmen-
dinger et al., 1987).

Three basement lineaments or transverse faults cross the
field trip area. The lineaments originated during Proterozoic
rifting and were reactivated during Cretaceous-Tertiary
compression as tear faults or right-lateral ramps to the east-
ward propagating thrusts (Fig. 3). In addition, the lineament
acted as sediments conduits, linking the alluvial basins in
the thrust belt to the marine foreland basin. Figure 4 is an
interpreted seismic line across the field trip area; the inter-
pretation is tied to measured section B (Stops 3.3, 3.4 in
Fig. 2) and C (Stops 2.4, 2.5, 2.6 in Fig. 2) and two wells.
Together, the figures illustrate the configuration of the
thrust systems. The Pavant 1 (P1), Pavant 2 (P2), and the
Canyon Range (C) thrust are Mesozoic thrusts, while the
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Gunnison (G) and Wasatch (W) thrusts are of early Cenozoic
age; the latter terminate as blind thrusts in Jurassic strata
underneath the Wasatch Plateau (Standlee, 1982; Lawton,
1985; Villien and Kligfield, 1986). Figure 5 shows the inter-
preted structural and stratigraphic history of the fold-thrust
belt in central Utah by Schwans (1988b, 1995). Alternate
views and an expanded discussions are by Lawton and
Trexler (1991), Royse (1993), Lawton et al., (1994), DeCelles
et al,, (1995), and Talling et al., (1995).

Zonation

Schwans (1995) discussed in detail the structural and
stratigraphic zonation of the Cretaceous foreland basin. A
zone proximal to the thrust front (<150 km distance) exhibits
high sediment accommodation and tectonic subsidence,
probably due to Airy isostasy. In contrast, tectonic subsi-
dence and sediment accommodation in a second zone
located farther basinward (>150 km distance) decreases to
the east, probably due to flexural subsidence across the
ramp. The different subsidence modes significantly influ-
enced stratal stacking and sequence boundary character
throughout the history of foreland basin infilling. The U2-
U3 (96.5-90 Ma) sequence in Figure 1 is an example of a
composite sequence that formed due to regional loading
and crustal relaxation. The U2 unconformity defines the
top of the Lower Cretaceous basin fill (Stop 3.2 in Fig. 2).
Overlying 3rd-order sequences of Late Cretaceous age are
stacked into retrograding, aggrading, and prograding
sequence sets (Stops 3.4, 3.5 in Fig. 2).

Thrust-loading also impacted short-term sediment accom-
modation and stratal patterns during final shortening in
the latest Campanian, Maastrichtian, and early Paleocene
(Schwans, 1987b; Lawton and Trexler, 1991; Talling et al.,
1995). Movement along the foreland thrust systems (G and
W in Fig. 3) caused segmentation of the proximal zone into
a series of north-south elongate, thrust-cored anticlines (see
Maastrichtian-Paleocene in Fig. 5). The history of the anti-
clinal uplifts is manifested in the basin fill of adjacent syn-
clines in a series of unconformity-bounded, clastic wedges
(U8-U9 and U9-U10 sequences in Fig. 1) that onlap the
anticlinal structures (Stops 1.1, 1.2, 1.3, and 3.1 in Fig. 2).

LOWER CRETACEOUS 'BASIN FILL
Sequence Stratigraphy and Zonation

Figure 6 is a measured section of the earliest foreland
basin deposits in the proximal zone (Stop 3.1 in Fig. 2).
Schwans (1985a, 1986b, 1988a, 1988b) discusses the facies,
demonstrates the character and regional extent of the bound-
ing unconformities, and suggests a Barremian(?) through late
Albian age for the U1-U2 sequence; Figure 1 shows only the
upper portion of the sequence and unconformity U2. The
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name Pigeon Creek Formation was suggested by Schwans
(1988a) for the proximal clastics with the measured section
in Figure 6 as the type section. Correlative formations are
the Cedar Mountain and Burro Canyon formations in the
distal zone in eastern Utah and western Colorado (Schwans,
1988b, which range in age from Barremian? through latest
Albian (116.5-96 MA) (Heller and Paola, 1989; Yingling and
Heller, 1992).

Proximal Zone Architecture

Initial sedimentation in the proximal zone and onset of
thrusting occurred during Barremian through lower to mid-

dle? Aptian time and was marked by the deposition of thin
lacustrine limestones, flood plain mudstones, and intercalated
channel-form sandstones (see Lower Mbr. in Fig. 6). Flood-
plain-dominated systems were overwhelmed by sheet-flood
fan conglomerates (Upper Mbr. in Fig. 6) during the mid-
dle? Aptian through late Albian. Fans were sourced by the
emergent Pavant 1 allochthon and shed eastward and later
southward into the subsiding foredeep (Schwans, 1986b,
1988a, 1988b). In the outcrop (Stop 3.1 in Fig. 2), earliest
sheet-flood fan deposits are made up of thin sheets of chert-
pebble conglomerates and sandstones set within thick sec-
tions of variegated mudstones. Later, fan deposits form a
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thick succession of quartzite- and carbonate-clast sheet-flood
conglomerates stacked into vertically amalgamated and lat-
erally overlapping sheets separated by thin, red mudstones
(Fig. 7). The succession of clast lithologies, clast sizes, and
facies reflects hanging wall emergence and erosion of the
Pavant 1 allochthon, resulting in an inverted clast-lithology
stratigraphy (Schwans, 1998a).

Sediment thicknesses of the initial basin fill (e.gz., Bar-
remian through early to middle? Aptian) range from >300
m at the thrust front to 100 m along the eastern edge of the
proximal zone (see dark grey area west of left dashed line,
e.g. LPC, in Fig. 8). Sheet-flood fan accumulation was most
pronounced in areas located basinward of the intersection
point between the Leamington lineament and the frontal
zone. The latter acted as a lateral ramp between the Charl-
ston-Nebo thrust sheet to the north and the Pavant 1 thrust
sheet in the south; the resulting tear fault zone between the
thrust sheets formed a paleovalley and acted as sediment
conduit. In contrast, sediment thicknesses during the mid-
dle? Aptian through late Albian range from >600 m at the
thrust front to 300 m along the eastern edge of the proximal
zone (see darkest grey area west of left dashed line, e.g.
UPC, in Fig. 9) (Heller and Paola, 1989).

Distal Zone Architecture

Initial deposition in the distal zone in eastern Utah and
western Colorado during the Barremian through lower-
middle? Aptian consisted of chert- to quartzite-pebble con-
glomerates and sandstones transported in braided to low-
sinuousity, multi-channel systems. Early drainages seem
restricted to northwest-southeast oriented, broadly incised
paleovalleys located in southeastern and eastern Utah (see
light gray area, e.g. LBC and LCM, in Fig. 8) (Yingling and
Heller, 1992). Well logs indicate that sediment thicknesses

in the paleovalleys do not exceed 60 m {Schwans, 1986b,
1988h).

The coarse-clastic paleovalley fills are overlain by exten-
sive flood plain mudstones with thin intercalated lacustrine
limestones, paleosols, zones of calcrete nodules, and partial-
lv to completely exhumed, highly sinuous, channel-form
sandstones with laterally attached sheet sandstones. The
flood plain-dominated successions are of Albian-age and
were deposited across a wide area of minor topographic
relief that experienced little or no subsidence (see light and
lightest grey area east of left dashed line, e.g. UCM and
UBC in Fig. 9). Well logs indicate that sediment thickness
does not exceed 300 m {(Schwans, 1986b, 1988h).

Implications for Basin Subsidence

Initial basin subsidence in the proximal zone allowed
the accumulation of 1000 m of strata within a narrow sub-
siding trough defined by the Pavant 1 thrust front in the
west and the Ephraim Fault in the east. Conversely, sedi-
ment accommodation in the distal zone during the same
time interval was more or less insignificant across a wide
basin area. Schwans {1986b, 1987a) interpreted this differ-
ence in sediment accommodation patterns to indicate that
tectonic subsidence in the proximal zone was predominant-
ly an Airy isostatic subsidence of basement blocks beneath
and near the thrust load and de coupled or detached from
subsidence of the stable, unbroken craton of the distal zone,
A comparison of Figures 8 and 9 shows that net aggradation
and net subsidence accelerated during the late Aptian
through Albian, involving most of eastern Utah. This change
is interpreted to reflect the change from laterally restricted,
Airy isostatic subsidence near the load to larger scale, flex-
ural subsidence.
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Figure 6. Measured section of the Lower Cretaceous portion of Indianola Group (Undifferentiated) of Spicker (1946, 1949) in Chicken
Creek Canyon (Sec. 12, T. 158, R. 1E), east of Levan, Utah (Stop 3.2 in Fig. 2). The section shows the age, grain size distribution, bedding
types, maximum clast size distribution, and clast type distribution for the Pigeon Creek Formation of Schwans (1988a, 1988b). The section

defines the UI-U2 sequence of Figure 1.

UPPER CRETACEOUS SEQUENCE
BASIN FILL

Sequence Stratigraphy and Zonation

Spieker (1946, 1949) defined the Upper Cretaceous
Indianola Group and its members (see Proximal Foreland
column in Fig. 1). Lawton (1982, 1983) presented an updated
lithostratigraphic framework and facies scheme. Schwans
(1985b, 1986a, 1988b, 1989, 1990, 1991, 1995) revised the
biostratigraphy and proposed a sequence-stratigraphic
framework for the Upper Cretaceous Indianola Group (see
Proximal Zone in Formation Stratigraphy column in Fig. 1)
and associated time-equivalent units, including conglomer-
ates to the west in the Gunnison Plateau (e.g., Indianola
Croup [Undifferentiated] of Spieker [1946, 1949]), the
Canyon Range, and in the Pavant Range {e.g., Hinterland

column in Fig. 1), as well as shallow-marine strata in the
east in the Wasatch Plateau and Book Cliffs (Distal Fore-
land column in Fig. 1),

Nine unconformities and ten depositional sequences (U2
through U10 in Fig. 1) are identified in the basin fill. Within
each depositional sequence alluvial fan conglomerates and
braided stream sandstones located at the thrust front (Figs.
10, 11) grade down-depositional dip and eastward into
braided stream and overbank successions (Figs. 12, 13)
(Stops 3.1, 3.4, 3.5 in Fig. 2); the latter may be cut by con-
glomeratic valley fills several kilometers wide and up to 300
m thick (see conglomerates in measured sections Figs. 11,
12, 14) (Stops 3.4, 3.5, and Optional Stop 1.3 in Fig. 2). The
nonmarine strata give way to shoreline and open-marine
facies via wave-dominated shorelines (Stop 1.5 in Fig. 2),
fluvial-dominated deltas (Stop 2.1, 2.2 in Fig 2), and braid-
deltas (Figs. 15, 16) (Stops 2.4, 2.5., 2.6 in Fig. 2).
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Figure 11. Measured section A of alluvial fan conglomerates shown in Figure 10. Section was measured in Oak Creek Canyon (Sec. 10, T
17S., R. 2W,), Canyon Range, Utah. Lithofacies include crudely stratified block and boulder conglomerates, cross bedded scour-based
boulder- to cobble-conglomerates, and cross bedded pebbly sandstones arranged into 20 m to 30 m-thick, upward-fining successions.
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Figure 12. Measured section B (see Figs. 1 and 4) of the Upper Cretaceous portion of the Indianola Group (Undifferentiated) of Spieker
(1946, 1949) in Chicken Creek Canyon (Sec. 12, T. 158, R. 1E), east of Levan, Utah (Stops 3.2 through 3.5 in Fig. 2). The section illustrates
the alluvial architecture of ten depositional sequences of Schwans (1988b, 1995).
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Figure 15. Measured section C (see Figs. 1, 4) of the Upper Cretaceous portion of the Indianola Group of Spieker (1946, 1949) at Palisade Lake State Park (Secs. 36-36-25, T. 18S.,
R. 2E.), east of Sterling, Utah (Stops 2.4 through 2.6 in Fig. 2). The section illustrates the alluvial to nearshore-marine architecture of ten depositional sequences of Schwans
(1988b, 1995).
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Table 1: Lithofacies and depoitional environments in the proximal zone

Environment Lithofacies & Bedding Types
Alluvial Fan Block and boulder conglomerates
* chaotic to crude-horizontal stratification
Scour-based, boulder-cobble-pebble conglomerates and gravely sandstones
* trough cross beds, horizontal planar beds, ripple cross beds
Paleovalley Fills Scour-based, boulder-cobble conglomerates and gravely sandstones

Bedload to Mixed-Load
Braided Stream

 low-angle, planar-inclined cross beds, trough cross beds, horizontal

planar beds

Scour-based, cobble-pebble conglomerates, pebbly sandstones, and sandstones
» trough cross beds

Mixed to Suspended Load Pebbly, channel-form sandstones
Fixed-Channel Stream and  trough cross beds
Floodplain

Overbank siltstones, mudstones, and detrital carbonates

« trough cross beds, ripple cross beds, contorted beds, load and flute casts,
rizoliths, biogenic traces of Scoyenia ichnofacies, angiosperm

leaf impressions

Facies successions are thus not only specific to either fore-
land basin zone, but are also definitive with respect to the
changes in the position of relative sea level and can be
grouped into the three component systems tract.

ROAD LOG

(Refer to Figure 2 for Stops, town names,
and landmarks)

Day1

Key Topics: Thrust systems and basin-fill overview;
alluvial fan facies, braided stream facies (Flagstaff

Ls

., Red Narrows Cgl., North Horn Fm., Price

River Fm., Castlegate Sdst.) wave-dominated
shoreline facies (Blackhawk Fm.); parasequence
expression and stacking patterns; unconformity

types.

Miles
0.0

50.0

Travel south on I-15 from Salt Lake City to Provo.
Interstate runs parallel to the Wasatch Mountains.
The Wasatch Fault, a major down-to-the-west nor-
mal fault, lies at the base of the foothills of the
Wasatch Range.

Exit I-15 onto Routes 89 and 6 proceed on Route 6
toward Price.

56.0

64.0

65.0

The road approaches the Wasatch Mountains and
passes through Pennsylvanian to Permian marine
sedimentary rocks.

Stop 1.1—Charlston-Nebo Thrust at summit at
Lake Fork.

Jurassic Navajo Sandstone of the Charlston-Nebo
thrust allochthon is exposed on north side of high-
way cut. Individual trough cross sets are up to 50
m thick. The Navajo Sandstone is conformably over-
lain by the Jurassic Twin Creek Limestone. The
rocks are part of the platform assemblage deposited
prior to Cretaceous thrusting and foredeep devel-
opment.

Stop 1.2—Red Narrows Conglomerate, Late
Maastrichtian?-Paleocene, Lake Fork

The Red Narrows conglomerates form the basal
portion of a piggy-back basin fill; the basin formed
and detached along the Gunnison and Wasatch
thrusts during the latest Maastrichtian (Fig. 2). Con-
glomerates are part of the scour-based, boulder-
cobble conglomerates and gravely sandstones facies
association (see Table 1) and are sourced from the
Triassic-Jurassic strata exposed in the Charlston-
Nebo allochthon to the west. Conglomerates are in
unconformably overlain and onlapped along uncon-
formity U10 by the Paleocene North Horn Forma-
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LEGEND
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Figure 18. Block diagram and reconstruction of the three-dimensional, depositional sequence architecture in the proximal zone at mea-
sured section B (Fig, 12). The block diagram is based on combining facies association identified in the outcrop with geometries observed in
aerial photographs.

tion (Fig. 1). North Horn architecture comprises
laterally isolated channel forms and occasional
lacustrine limestones set in thick red flood plain
mudstones.

Optional Stop 1.3—Angular Unconformity
between Red Narrows Conglomerate and Albian
through Turonian Cretaceous Strata, Lake Fork
To get there retrace U.S. Hwy. 6 for 1.5 miles toward
the west. Turn south onto State Route 89 and cross
-ail road tracks; take first dust road on left at end of

concrete barrier. Proceed east on dust road parallel
to Hwy. 6 on south side of valley. Take first fork
into small side valley to the right; follow road for
about 500 vards into valley. Figure 16 shows a por-
tion of the outcrops located on the east side of the

side valley. Horizontal Red Narrows Conglomerate
unconformably overlies steeply dipping Cretaceous
strata. Fluvial-dominated shoreline deposits be-
neath U3 are unconformably overlain by quartzite

conglomerates and paleovalley fill. A parasequences
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Environment

Table 2: Lithofacies and depositional environments in the distal zone

Lithofacies & Bedding Type

123

Fluvial-dominated
Shoreline Deposits

Tabular sandstones

* low-amplitude crossbeds and trough cross beds with reactivation surfaces,
internal scours lined with ripped up shale clasts, shell debris, and log
impressions

Mudstones with thin beds of siltstones and muddy sandstones

» wave ripples, wave-form and current flaser ripples, soft-sediment
deformation, lags of mollusks, burrows of Planolites, Palacophycus, and
Skolithos

Lenticular sandstones, shelly banks, and mudstones

» low-angle inclined cross strata, trough cross beds, horizontal planar normal-
graded beds, current ripples, wave-form flaser and lenticular ripples, shelly
beds, burrows of Planolites, Palaeophycus, Thalassinoides, and Ophiomorpha

Wave-dominated Shoreline
Deposits

Open-Marine Fine-grained
Deposits

Rippled mudstones and siltstones
 wave-form flaser ripples, wave ripples, small hummocky cross

Hummocky cross-stratified sandstones
o hummocky cross strata, wave ripples, shelly lags, few burrows of

Ophiomorpha

Trough cross-bedded sandstones
e large-scale, low-amplitude trough cross beds, burrows of Planolites,
Palaeophycus, Thalassinoides, Ophiomorpha, and Skolithos

Scour-based, pebbly sandstones

* trough cross beds

Mudstones with thin beds of wave-rippled sandstones and flaser bedded
siltstones to very fine sandstones.

e massive, horizontal-planar bedded, carbonacecus

Micritic limestones

set of wave-dominated shoreline deposits sharply
overlies the valley fill along a flooding surface.
Return to U.S. Hwy. 6 and proceed east through

Approximate contact between the red flood plain
and fluvial deposits of the North Horn Formation
and the variegated lake plain mudstones of the

Approximate contact between Flagstaff Formation
and the lake-margin to lacustrine limestones and
gray to green mudstones of the Green River Forma-
tion. Time correlative red-colored, lake plain mud-
stones with well-defined fluvial channel-forms and
small deltas are considered part of the Colton For-

68.0

Red Narrows toward Price.
75.0

Eocene Flagstaff Formation.
76.0

mation of Early Eocene age.
94.0  Soldiers Summit
106.0

Price River Recreation Area. Paleocene North Horn
unconformably overlies Price River Formation of

108.0

latest Companian and Maastrichtian age along
unconformity U8 (Fig. 1).

Stop 1.4—Contact between Price River
Formation and Castlegate Sandstone

The Price River Formation outcrops north of the
road and comprises pebbly, channel-form sandstones
and overbank mudstones and siltstones deposited
in a mixed to suspended-load dominated braided
stream and flood plain. In contrast, the underlying,
cliff-forming Castlegate Sandstone (see cliffs down
road toward east) consists of scour-based, cobble-
pebble conglomerates, pebbly sandstones, and sand-
stones transported and deposited in laterally coa-
lesced barforms in a bedload-dominated braided
stream systems and channel complex. This contrast
in depositional architecture is interpreted to reflect
a significant acceleration in sediment accommoda-
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Figure 22. Outcrop and well-log cross section illusirating the sequence-stratigraphic relationship between the Lower Funk Valley Sandstone exposed in measured section C
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Case | Parameters: (A) High Tectonic Subsidence; (B) Multiple Higher Frequency Changes in Relative Sea Level;
(C) Abundant Sediment Supply

@ @ * Highstand Fluvial Architecture (Or Here High Tectonic Accommodation) is Marked By Overbank-Dominated
Systems With Defined Single-Channel Geometries.
@ » Lowstand Nearshore-Marine Architecture Is Marked By A Change In Parasequence Stacking From
Aggradational To Progradational (Type 2 Unconformity) And A Minor Basinward Shift In Facies.
» Lowstand Fluvial Architecture Shows Increased Clustering To Lateral Coalescing Of Single-Channel
Geometries.

Accommodation Cycle of Subsidence Fluvial-Nearshore Marine Architecture and
And Sea Level Change Sequence Stratigraphy
Rapid Burial Cycle Within Rapid
History Burial Fluvial Simulated Nearshore-Marine Parasequence
- Architecture GR Architecture Stacking
TIME IN 105 YRS.—> ; -
= 01 Rl [
4 i —
z o Ik (m) D
x 1 el |
{3 99 -
J’ TIME IN MY, > 500
Thrust Belt »  Foreland Basin

® O

Slow Burial
History

Cycle Within Slow
Burial

Nearshore-Marine

Fluvial Simulated
itecture GR

Parasequence
Stacking

Architecture

TIME IN 105 YRS.—>

TIME IN M.Y.~>

Retro\gradg

Shift
ggrade

iyl
B_

Foreland Basin

Thrust Beit P

Case Il Parameters: (A) Low Tectonic Subsidence; (B} Multiple Higher Frequency Changes in Relative Sea Level;
{C) Abundant Sediment Supply
@ @ e Highstand Fluvial Architecture is Marked By Overbank-Dominated System With Defined Single-Channel
Geometries.
@ » Lowstand Nearshore-Marine Architecture Is Marked By An Abrupt Change In Parasequence Stacking, A
Major Basinward Shift in Facies, Subaerial Erosion Of Marine Strata (Type 1 Unconformity), And Formation
Of Incised Valley Systems.

Farther Down Depositional Dip.

e Lowstand Fluvial Architecture Shows Formation Of Bedload-Dominated Systems and Vailey incision May Occur

CHORC

Figure 25. Fluvial and nearshore-marine architecture and parasequence stacking patterns in the accommodation cycle of subsidence and sea level change. The sea level cycle of
approximately 10° Yr. duration resides on the longer term signal of basin subsidence. Tiwo cases are illustrated.
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Plateau; outcrops on the right are lacustrine lime-
stones of the Green River Formation.

Sevier Bridge Reservoir on left in valley; sign for
town of Fayette, Utah. The floor of the valley con-
sists of Jurassic Arapien Shale, which constitute
the core of the collapsed Sevier Valley Anticline.
Turn right behind the town of Fayette onto dust
road that leads into Mellor Canyon. The road is
marked by a cattle guard and runs straight toward
the cliffs.

Stop 3.1—Piggy-back Basin Fill and Composite
Unconformities, North Horn Fm., Mellor
Canyon, Fayette

The east—dipping conglomerates and sandstones
in Mellor Canyon are equivalent to the Campanian
Six Mile Canyon Formation examined in Stop 2.6
(Fig. 17). Lithofacies include trough cross-bedded,
scour-based, cobble-pebble conglomerates grading
upward into cross bedded, pebbly sandstones and
sandstones; both represent deposition in gravely
and sandy bars on a low-relief alluvial fan. The
clastics form the eastern flank of the Sevier Anti-
cline, a thrust-cored uplift of Maastrichtian through
Eocene age, and are onlapped along composite
surface U8-U9 by folded, scour-based boulder-
cobble-conglomerates. The latter constitute a paleo-
valley fill probably age-equivalent to the Red Nar-
rows Conglomerate and record the onset of Sevier
Anticline uplift. They are in turn onlapped along
U10 by the red overbank siltstones and mudstones
of the North Horn Formation. Conglomerate-filled
channels at the base of the North Horn have
scoured into the underlying deformed conglomer-
ate unit along U10. The North Horn is onlapped
along Ull by the lacustrine mudstones and lime-
stones of the Flagstaff, which eventually overlap
the flank of the anticline. For a detailed discussion
of piggy back basin formation and the fill see
Lawton and Trexler (1991) and Talling et al., (1995).
Leave Mellor Canyon and return to Route 28; turn
right and proceed north.

As the road drops out of the foothills of the
Gunnison Plateau a few miles north of Juba Lake,
the mountain range visible in the distance to the
west (left) is the Canyon Range. The jagged peaks
of the range comprise the Precambrian to Cambrian
quartzites of the Canyon Range allochthon.

Levan, Utah. Turn right onto paved road toward
Wales and Chester and the Gunnison Plateau.

Bear right at fork and enter Chicken Creek
Canyon. The strata exposed on either side of the
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canyon are part of the Arapien Shale and include
open-marine shales, evaporites, such as gypsum,
and thin bedded limestones.

Uinta National Forest sign

Stop 3.2—Facies and Depositional Architecture
in the Lower Cretaceous Pigeon Creek Fm. and
U1-U2 Sequence, Chicken Creek Campground,
Levan

Turn right into campground located at foot of cliff
and park; walk up-canyon on road to where pave-
ment ends. Exposed is the Albian-age upper mem-
ber of the Pigeon Formation. It forms the cliff and
western flank of the Gunnison Plateau (Figs. 6, 7)
and consists of stacked and laterally overlapping
sheets of horizontally bedded, minor trough cross
bedded, pebble-cobble conglomerates with thin, in-
tercalated mudstones. Schwans (1988a) interpreted
these as sheetflood fan deposits. Strata of the Bar-
remian to Aptian-age lower member are exposed
in the foothills beneath the cliff and consist of
stacks of thickbedded, variegated mudstones with
intercalated silty-sandy zones, sheets of horizontal-
ly-bedded, pebble-sandstones, and sheets of hori-
zontally bedded, chert-pebble and mixed quart-
zite-carbonate cobble conglomerates. Deposition
occurred under a wet-dry, ephemeral climate on
gravely sheet-flood fans terminating in a ponded
flood plain. The lower member unconformably
overlies marginal-marine tidal-flat deposits of the
Twist Gulch Formation of Late Jurassic age along
unconformity Ul.

Stop 3.3—Expression of Unconformity U2,
Chicken Creek Canyon, Levan

Return to campground and drive up-canyon past
previously visited outcrops. The unconformity U2
separates Lower and Upper Cretaceous strata and
is located in the outcrop next to the dust road
where reddish colored mudstones and quartzite-
carbonate pebble sandstones are overlain by brown
to tan-colored, quartzite-pebble to cobble conglom-
erates. Conglomerates exposed below the surface
are of sheet geometry and exhibit mostly horizontal
stratification, a red sandstone matrix, few interca-
lated red mudstones and crossbedded sandstones,
and an average maximum clast size of 10 cm. In
contrast, conglomerates above U2 overlie well-
defined scours, are large-scale lenticular in cross
section, and exhibit trough cross bedding, a tan-
colored sandstone matrix, and an average maxi-
mum clast size of 6 cm. The conglomerate clast
composition changes significantly across the sur-
face, indicating a vastly different provenance.
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The U2 surface is thus expressed in the mea-
sured section (Fig. 12) by (1) al loss in labile clast
components, (2) an increase in stable clast types,
(3) a significant reduction in maximum clast size,
and (4) a change in depositional architecture.
Regional correlations show that U2 is onlapped
from east to west; the associated hiatus in Chicken
Creek Canyon probably spans the latest Albian
through Early-Mid? Turonian.

Stop 3.4—Facies, Systems Tracts, and Sequence
Architecture in the Upper Cretaceous Indianola
Group, Upper Chicken Creek Canyon, Levan
Continue up-canyon and stop at ponds; walk back
100 yards and view outcrops above U6. The mea-
sured section in Figure 12 shows five unconformity-
bounded and upward fining packages. Lithofacies
in the outcrop include scour-based, cobble-pebble
conglomerates grading upward into cross bedded,
pebbly sandstones and sandstones and reflect trac-
tion transport and deposition in gravely and sandy
bars in a mixed-load dominated braided stream.
The scour-based coarse-clastics are overlain along
a sharp surface by overbank siltstones and detrital
carbonates with intercalated trough cross bedded,
pebbly channel-form sandstones; climbing ripple
lamina sets, wedge-planar cross-stratification, trough
cross-stratification, contorted bedding, and micro
cross-stratified sets, together with an abundance of
preserved secondary structures, such as contorted
bedding, load and flute casts, rhizoliths, plant im-
pressions, and biogenic traces are ubiquitous. Feed-
ing and foraging traces belong to the Scoyenia ichno-
facies. Deposition occurred via low-sinuosity, mixed-
to suspended-load dominated channels set in a
ponded flood plain.

In terms of the foreland accommodation model
of Schwans (1995), this change in depositional
architecture per sequences reflects the up-dip
response of fluvial systems located in the proximal
zone to base level changes occurring at the shore-
line in the distal zone. In this example, the uncon-
formity U6 is expressed by erosion of underlying
strata, a basinward shift in facies across the surface,
and onlap against the surface.

Stop 3.5—Cretaceous-Tertiary Transition and U8
to U9 Sequence Boundaries in Chris Canyon,
uppermost Chicken Creek Canyon, Levan
Continue on dust road past cliffs with quartzite-
boulder conglomerates; these are the paleo-valley
fill facies shown in Figure 16. Stop at mouth of
Chris Canyon or second dust road branching off to

the right. Quartzite-boulder conglomerates identi-
cal to those previously encountered in Mellor
Canyon (Stop 3.1) and in the Red Narrows (Stop
1.2) occur beneath and above the angular uncon-
formity U9 at the mouth of the canyon. The transi-
tion from the Cretaceous to the Tertiary is ex-
pressed as a series of angular unconformity, includ-
ing U8 through Ull, that merge on structure to-
ward the emergent anticlines in the Sanpete Valley
to the east and the Sevier Valley in the west. In all
localities, the conglomerates above U9 show a pro-
nounced angular relationship to those beneath the
surface, indicating that erosion and redeposition
occurred during uplift and basin subsidence. Pollen
recovered from channel coals in Six Mile Canyon
(strata above U6 or Stop 2.6) indicate a Late
Maastrichtian age for these. The quartzite-boulder
conglomerates are onlapped along surface U10 by
the red mudstones of the Paleocene North Horn
Formation.

Return to Levan and turn right onto State Route
28 toward Nephi. Turn right onto I-15 North toward
Salt Lake City.
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