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Upper Proterozoic Glacial-marine and Subglacial
Deposits at Little Mountain, Utah

NICHOLAS CHRISTIE-BLICK
Department of Geological Sciences and Lamont-Doherty Geological Observatory
of Columbia University, Palisades, New York 10964

ABSTRACT

A sequence as much as 1,000 m thick of slaty argillite, diabase, and glacially derived diamictite of Late
Proterozoic age is well exposed and easily accessible at Little Mountain on the shore of the Great Salt Lake
near Ogden, Utah. The rocks occur in the lower part of a westward-thickening miogeoclinal wedge that was
folded and thrust eastward over the continental platform during Cretaceous and early Tertiary time. The
diamictite is relatively massive and texturally homogeneous, and is composed of rounded, dominantly
granitic clasts, as large as boulders, dispersed in a gritty, feldspathic matrix. It is thought to have been
deposited from floating ice, and in part from grounded ice, as a continental ice sheet advanced westward

into a marine basin.

INTRODUCTION

The geology of Little Mountain, approximately 25 km
west of Ogden, Utah, was first described by Blackwelder
(1932), who noticed the distinctive boulder-bearing black
diamictite “from the window of a passing train.” Similar
rocks of Late Proterozoic age' occur in many parts of
northern Utah and southeastern Idaho, and over the past
50 years these deposits have been ascribed to both glacial
and nonglacial processes (Crittenden and others 1983).
This short article is intended to provide an up-to-date
description and interpretation of the diamictite outcrops
at Little Mountain, which are among the most accessible
in Utah.

DESCRIPTION OF SEQUENCE AT
LITTLE MOUNTAIN

Little Mountain is underlain largely by diamictite (fig.
1). The base is exposed only at the southern end, where a
section of diamictite approximately 400 m thick overlies
about 120 m of diabase, largely intrusive, and about 400 m
of slaty argillite (fig. 2). Thicknesses are uncertain, be-
cause the diamictite is relatively massive and all units are
internally folded (as shown diagrammatically in the cross
section of figure 1).

Late (Upper) Proterozoic is used in the sense recommended by
Harrison and Peterman (1980, 1982) for the interval between 900 and
570 Ma.

SLATE UNIT

The slate unit, the lowest exposed at Little Mountain
(fig. 2), consists predominantly of gray, locally pyritic,

'lineated slaty argillite with kink bands (fig. 3). Primary

laminae are defined by differences in hue and are inter-
sected obliquely by the cleavage. Bed thicknesses range
from less than 1 mm to several centimeters, and the
thickness of individual laminae is locally variable. The
apparent absence of variation in grain size between lami-
nae and especially the absence of well-defined couplets
suggest that the slates are not clastic varves, an interpre-
tation proposed by Blackwelder (1932). Subordinate in-
terbeds of fine-grained quartzose sandstone are com-
monly laminated or cross-laminated, and are bounded by
sharp, planar contacts. Sandstone as thick as several me-
ters locally occupies broad channels. A thin, lenticular,
poorly exposed bed of gray clastic dolomite occurs near
the top of the slate unit (d in fig. 1).

VOLCANIC UNIT

The volcanic unit consists of massive diabase (probably
intrusive) and subordinate pillow lava (fig. 4). Good exam-
ples of the latter occur near the circular tanks immedi-
ately south of the road inside the outer perimeter of the
Hill Air Force Base annex. Pillow rims are vesicular and
interpillow material is inferred to be mainly aquagene
tuff. The diabase is composed of saussuritized laths of
plagioclase in a felted groundmass chlorite, with calcite
and minor epidote. Trace element data are consistent
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with intraplate voleanism (Harper and Link 1985), cor- DIAMICTITE UNIT

roborating the interpretation of the formation of Perry The uppermost unit exposed at Little Mountain con-
Canyon as a syn-rift deposit (Crittenden and others 1983).  sists of black, locally pyritic diamictite (fig. 5), in which
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EXPLANATION

FIGURE 1.—Geological map and cross section of Little Mountain, in parts of the Plain City SW, Willard Spur, Fremont Island,
and Ogden Bay Quadrangles, Utah (from Blick 1979). The diamictite, volcanic, and slate units are informal subdivisions of the
formation of Perry Canyon of Sorensen and Crittenden (1976). Symbols: d, dolomite; Qu, undifferentiated Quaternary sediments.
Sample localities and histograms of clast count data (see tables 1 to 3). Index map: P, Promontory Range; F, Fremont Island; A,
Antelope Island; filled triangles represent diamictite localities.
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FIGURE 3.—Gray, laminated slaty argillite exposed near the railway tracks at the southern end of Little Mountain (see fig. 1).

pebbles and cobbles are dispersed in a gritty, feldspathic
matrix of fine- to medium-grained sand and metamorphic
chlorite, illite, and biotite. Point counts in thin section
reveal that the diamictite is a lithic wacke® (table 1), but
alkali feldspar has been partly replaced by biotite, and the
point counts do not reflect the original proportions of
feldspar grains and rock fragments.

Major element chemistry of diamictite matrix and grit
at Little Mountain is compared with the average
graywacke of Pettijohn (1963) in table 2. SiO_, MgO, and
MnO of the diamictite samples are similar to average
graywacke. A granitic source is suggested by high Al,O,
and K,0O and by an average whole rock K,O/Na,O ratio of
1.7. The proportion of CaO is variable, but low in most
samples of diamictite. Total iron (as FeO) and TiO, are
high especially in samples with low Na,O.

%A lithic wacke is a sedimentary rock composed of more than 15%
matrix grains smaller than 30m, and in which on a QFR plot of grains
larger than 30 pm, R > F and R > 5% of the total (Q = monomineralic
quartz and chert lacking a lithic texture; F = single grains of feldspar; R
= polymineralic grains or those with a lithic texture; modified from
Pettijohn and others 1973; Williams and others 1982).

At an outcrop scale, the diamictite is generally massive
and the matrix homogeneous. However, a careful search
usually reveals sandy or gritty matrix clots, silty wisps,
and diffuse pebble layers, together with more well-de-
fined, lenticular interbeds of conglomerate, grit, sand-
stone, and slaty argillite, particularly in the lower part of
the diamictite unit (figs. 6 and 7).

Clasts larger than 1 ¢m in the diamictite are predomi-
nantly granitic (gneissose, schistose, and unfoliated vari-
eties) and quartzite, with accessory metamorphic, vol-
canic, and sedimentary rocks, including carbonate (table
3). Among quartzite stones is a rare but distinctive green
chromian variety found at many localities in northern
Utah (Crittenden and others 1983). The granite and
quartzite clasts are for the most part rounded and rela-
tively equidimensional. The largest observed at Little
Mountain is 3.4 m in diameter (granite). Clast concentra-
tion ranges from relatively sparse to crowded. Some
stones are noticeably flattened parallel to the phyllitic
cleavage (fig. 5). A few have developed tails.

The lower contact of the diamictite unit is inferred to be
relatively conformable and non-erosive, because diabase
fragments are rare (table 3, locality 1). On nearby Fre-
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FIGURE 4.—Pillow lava exposed near the circular tanks immediately south of the road inside the outer perimeter of the Hill Air
Force Base annex.

mont Island in the Great Salt Lake (fig. 1), correlative
diamictite locally overlies slaty argillite and several tens of
meters of pebbly argillite. Condie (1967) termed the con-
tact gradational. Unfortunately, in most places on Fre-
mont Island, this important relationship is obscured by
diabase sills (Blick 1979).

REGIONAL GEOLOGIC SETTING

The rocks at Little Mountain occur in the lower part of a
westward-thickening miogeoclinal wedge and are correl-
ative with the formation of Perry Canyon mapped by
Sorensen and Crittenden (1976) in the Willard thrust
plate of the northern Wasatch Mountains (see the index
map of fig. 1). On Fremont Island, southwest of Little
Mountain, this same stratigraphic unit may be as much as
3,000 m thick (Crittenden and others 1983). As in the
northern Wasatch Mountains, the formation of Perry
Canyon exposed at Little Mountain and on Fremont Is-
land is allochthonous and was displaced several tens of
Lilometers to the east during Cretaceous and early Ter-
tiary time by the Willard thrust (Crittenden 1972). In

contrast, diamictite on Antelope Island (fig. 1) is au-
tochthonous or parautochthonous and was deposited on
the continental platform (Christie-Blick 1983).

INTERPRETATION OF DIAMICTITE UNIT

Recent work by Varney (1976), Blick (1979), Ojakangas
and Matsch (1980), Christie-Blick (1983), and Crittenden
and others (1983) has provided definitive evidence for
Late Proterozoic glaciation in Utah. This evidence con-
sists of (1) thick sections of diamictite containing some
angular matrix grains and large lonestones (i.e., isolated
stones) of diverse provenance; (2) the occurrence in di-
amictite of hard stones, including chert, with intersecting
scratches and grooves, facets, and rarely a pentagonal
flatiron shape (features here attributed to glacial abra-
sion); (3) the presence in the central Wasatch Mountains
of a striated pavement beneath diamictite; and (4) the
occurrence in laminites at widely separated localities of
lonestones, rarely as large as boulders, together with
isolated sand and gravel clots, all of which are thought to
have been rafted by ice.
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FIGURE 5.—Relatively crowded pebble-cobble diamictite near
the base of the diamictite unit. Note the heterogeneity in clast
distribution and the tendency for clasts to be flattened parallel
to the phyllitic cleavage.

At Little Mountain I observed only one stone (quartz-
ite) with possible striae. The apparent lack of striated
clasts is probably due to their being dominantly “granite,”
to subsequent metamorphism, deformation, and weath-
ering, and to poor exposure of original clast surfaces.
Stone shape is strongly influenced by internal structure
(foliation, fractures, bedding), and at Little Mountain
most flat surfaces are probably not facets, contrary to the
original interpretation of Blackwelder (1932).

No convincing dropstones (rafted lonestones) have
been observed at Little Mountain. However, in the lower
part of the formation of Perry Canyon on Fremont Island,
isolated quartzite boulders as large as 2.5 m occur in
bedded argillite with dispersed granules (Crittenden and
others 1983). Heterogeneous diamictite and irregular
pods of partially sorted sediment in diffuse contact with
surrounding diamictite at Little Mountain may constitute
additional evidence for rafting (fig. 7, A and B).

The occurrence of possible dropstones and of turbidites
in the formation of Perry Canyon on Fremont Island and
of pillow lava at Little Mountain suggests subaqueous
deposition for at least the lower part of the diamictite unit.
The absence of clastic varves in fine-grained beds sug-
gests marine sedimentation. The depth of water is not
known, although it was probably subtidal. Pyrite is com-
mon as porphyroblasts, and the interfingering of hlack
diamictite and mudstone with olive-draly graywacke and
siltstone (northern Wasatch Mountains; Crittenden and
others 1983) indicates that the occurrence of iron sulphide
probably mimics its original distribution in the sediment
in response to sporadically reducing conditions.

The lowermost part of the diamictite unit is thought to
have accumulated in a glacial-marine environment from
ice-rafted detritus and fine material suspended in the
water column. Some diamictite may be waterlain tillite
(i.e., subglacial meltout or flow tillite derived from a
partly buoyant glacier or ice sheet with a subaqueous ice
margin; Dreimanis 1979). Evidence favoring such inter-
pretations consists of (1) the transitional contact between
diamictite and underlying argillite on Fremont Island; (2)
the preferential occurrence of current-sorted sediment
near the base of the diamictite unit at Little Mountain; (3)
the occurrence of texturally heterogeneous diamictite (a
result of rafting and winnowing); and (4) the fact that basic
volcanic rocks, exposed on the seafloor immediately prior
to deposition of the first diamictite, are not markedly
included as clasts. However, much of the diamictite at
Little Mountain is massive, and some may be lodgment
tillite, deposited beneath an actively moving glacier as a
result of retardation of debris particles or debris-rich ice
masses by friction against the glacier bed (see Boulton and
Deynoux 1981). Corroborating this interpretation is the
observation at the north end of Little Mountain of one
diamictite bed overlying an erosion surface that truncates
inclined beds of pebbly sandstone and conglomerate
(sample locality LM36 in fig. 1).

A few paleocurrents measured in turbidites in the
lower part of the Fremont Island section are toward the
northwest, but in view of the deformation at that locality,
this direction must be regarded as tentative (Crittenden
and others 1983). Few data are available for the section
exposed at Little Mountain.

In summary, the diamictite at Little Mountain is inter-
preted to be glacially derived on the basis of evidence best
displayed at other localities. It is thought to have been
deposited from floating ice and in part from grounded ice
that advanced from a granitic basement terrane, exposed
to the east, into a marine basin.
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Table 1. Results of point counts in thin sections of diamictite (LM 19, LM 31, LR 2 ) and sandstone (LM 32).
Sample localities are indicated in figure 1. LR 2 is from Landing Rocks about 1 km southwest of Little Mountain.

Sample LM 19 LM 31 LR2 LM 32
Quartz:
monocrystalline 35.2 20.8 16.0 38.6
polycrystalline 2.4 1.9 0.5 2.3
microcrystalline — 0.4 — 0.9
Plagioclase 0.6 - — 0.4 9.5
Alkali feldspar 0.9 — — 1.1
Carbonate:
authigenic 1.8 — — 1.9
detrital 0.2 0.4 4.4 1.9
Rock fragments:
granitic . 0.4 3.2 0.9 7.4
volcanic — 0.2 3.6 —
sedimentary — 0.7 0.2 0.5
metamorphic — 0.7 — —
undifferentiated 2.8 1.8 — —
Muscovite 1.5 — — 0.3
Biotite — 44 0.5 3.2
Chlorite — 1.2 — 2.0
Opaque 0.4 1.2 0.9 1.3
Goethite — 1.1 0.5 1.4
Accessory — — 0.2 —
Matrix 53.9 61.6 71.9 27.6
Void — 0.5 — —
Total % 100.1 100.1 100.0 99.9
Total points counted 545 567 562 557
Modal grain size f-m f-m f-m m-c
Q 88.5 76.7 63.5 67.2
F 3.5 0 1.5 17.0
R 8.0 23.3 35.0 15.8

Note: The results have been normalized to 100% Q (quartz) + F (feldspar) + R (rock fragments). Matrix grains are those < 30 pm.
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Table 2. Chemical analyses of diamictite matrix and grit using atomic absorption (MgO, Na,O) and X-ray fluores-

cence (other elements). Analyses in parentheses are well outside the range of standards. Total iron is indicated as

FeO*. Results are compared with the composition of the average graywacke of Pettijohn (1963). L.O.1., lost onignition
(total volatiles for average graywacke). Sample localities are indicated in figure 1.

Average

Average
Diamictite Graywacke of

Composition Pettijohn
Sample ILM1 LM 19 LM 22 LM 31 LM 36 mean s (1963)
Si0, 65.0 65.4 65.4 67.4 69.3 65.8 1.1 66.75
Al,O, 14,5 14.4 14.1 14.2 12.1 14.3 0.2 13.54
TiO, 1.4 0.6 1.0 0.8 0.5 1.0 0.3 0.63
Ca0O (0.5) 3.2 1.9 " (0.4) 4.3 1.5 1.3 2.54
FeO* 7.3 6.4 7.0 6.1 4.2 6.7 0.5 4.98
MgO 1.7 1.4 2.3 2.2 1.2 1.9 0.4 2.15
MnO 0.07 0.12 0.15 0.12 0.23 0.12 0.03 0.12
Na,O 1.9 2.3 2.0 2.9 5.0 2.3 0.5 2.93
K,O 4.7 3.4 3.6 3.3 (0.6) 3.8 0.6 1.99
L.O.L 3.0 3.3 3.7 3.5 3.3 3.4 0.3 4.46
Total 100.1 100.5 101.2 100.9 100.7 100.8 100.09
K,0/Na,0 . 2.5 1.5 1.8 1.1 0.12 1.7 0.68

T
diamictite grit

Analyses by N. Christie-Blick

Table 3. Results of clast counts in diamictite at Little Mountain (minimum clast size counted = 1 cm). Localities 1 to 4
areindicated in figure 1; locality 5 is at the southern tip of Little Mountain and locality 6 is at Landing Rocks about 1 km
to the southwest.

Locality 1 2 3 4 5 6
Quartzite 5.5 14.7 15 1.5 0 tr
Carbonate tr 0 8 0 tr 9.7
Other sedimentary 0 0 2 0 tr 4.9
Pelitic schist 0 1.0 0 1.5 tr tr
Granite, gneiss, pegmatite 91.7 83.3 68 87.7 82.4 85.4
Vein quartz 1.8 1.0 4 3.1 2.2 0
Basic volcanic rock 0 tr 1 6.2 15.4 tr
Silicic volcanic rock 0 0 1 0 0 tr
Volecanic rock tr 0 0 0 0 0
Unidentified 0.9 0 1 0 0 0
Total % 99.9 100.0 100 100.0 100.0 100.0

Total counted 109 102 100 65 91 103

Note: Trace (tr) implies that the clast type was observed in the outerop but not sampled in the count.
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FIGURE 6.—Feldspathic, gritty pod in diamictite, probably a product of winnowing.
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