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ABSTRACT

The Guilmette Formation contains thick-bedded to massive limestone units that have often been called
“reefs.” Approximately 58 km (36 mi) west of Wendover, Utah-Nevada, one of these Guilmette Formation
“reefs” is well exposed in the northern Pequop Mountains and was studied in detail. Petrographic analysis
of the microlithofacies and paleontology, combined with data from sections measured in the field, revealed
the presence of a mound and some proto-mounds, surrounded by shallow shelf back-reef sediments. This
mound is not a reef, as previously supposed, and differs from mounds described in the literature in the
following ways: (1) lack of diagenetic stromatactis structures, and (2) lack of obvious baffling organisms in
the main body of the mound. Above this mound is an erosional unconformity which, dated by conodonts and
some diagnostic stromatoporoids, shows that rocks of the Famennian stage (uppermost Devonian) are
missing, which represents a period of about 5 million years.

Cementation and neomorphic diagenesis have combined to greatly reduce permeability. However,
dolomitic zones and a sandstone unit exhibit good hydrocarbon reservoir potential. This reservoir potential
is dependent upon early hydrocarbon migration prior to cementation.

INTRODUCTION AND LOCATION

Devonian carbonate buildups have been the subject of

intense study in Canada, Europe, and Australia. These

buildups have true organic “reef” character and in Can-
ada are prolific producers of hydrocarbons. Devonian car-
bonate buildups in the western United States have been
studied by few workers; their work has been equivocal.
Reso (1959), after some preliminary work, concluded that
the Guilmette Formation carbonate buildups in the Pah-
ranagat Range of east central Nevada were actual reefs,
comparable to the reefs in Alberta. Hoggan (1975, p. 145)
reported that much unpublished work, some of which was
done by Stanton in the same area, contradicted Reso’s
conclusions. To date, no unequivocal reef has been de-
scribed from the Guilmette Formation.

The objective of this study is to define what type of car-
bonate buildup is represented by the Devonian upper
Guilmette Formation in the northern Pequop Mountains
(fig. 1). It was accomplished by tracing the vertical and

horizontal microlithofacies and fossil organism changes
throughout the entire areal extent of the outcrop in the
study area. The outcrop covers an area of approximately 3
km?located in the central to southeast quarter of T. 37 N,
R. 65 E, Elko County, Nevada. From fieldwork and the
definition of microlithofacies as seen in thin section, con-
clusions are drawn determining what type of carbonate
buildup is present in the area and how it relates to Devon-
ian reefs found in other parts of the world. In addition, the
economic potential of the buildup is determined for both
economic minerals and hydrocarbons.
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fining a carbonate buildup, and so only works of the latter
category will be described here.

|
|
. 4 [ Three workers, Petersen (1956), Nadjmabadi (1967),
o ‘
|
|

and Niebuhr (1980), have made interpretations on the
depositional environment of the Guilmette Formation.

7, Y Iy,

///4 / % Petersen (1956, p. 17) studied the Guilmette Formation in
é 7 Z <| central Utah, and—on the basis of the number of clastics

/// 7 Z 7 w7 olx :
// 0 7 7 o 7 :l: present, the absence of shale, and the presence of micro-
7 27 ) > /// 5| structures—concluded that the environment of deposition
@/ S 2 é ® 7 = there was a stable shelf near sea level. Nadjmabadi (1967),
/’/,// /2 < g working in the Leppy Range north of Wendover, Utah-

//////// X

Nevada, concluded that sediment deposition there oc-
curred in a warm, shallow, open-marine environment. He
also found evidence in the rocks of fluctuations of wave-
base depth, indicating variations in sea level. Niebuhr
(1980), who measured sections in the Egan and Southern
Egan Ranges (southeastern Nevada), divided the rocks
there into three facies, lagoonal, stromatoporoidal bio-
herms, and shallow open marine.
Four workers, Reso (1959), Stanton (unpublished, re-
ported in Hoggan 1975), Hoggan (1975), and Dunn
(1979), concentrated at least a part of their work on inter-
FIGURE 1.—Index map showing location of study area. preting carbonate buildups. Reso (1959, p. 1661; 1963, p.
909), after doing some preliminary work in the Pahrana-
gat Range (soutli central Nevada), reported similarities
fications, and useful criticisms. The writer is indebted to  between the Guilmette Formation “reefs” in the Pahrana-
John S. Berge, who provided the majority of the financial  gat Range and Mount Irish to Devonian reefs in Alberta.
support for this thesis, and also to Drs. Joseph St. Jean, Subsequently, many geologists did unpublished work in
John Wray, and Charles Sandberg for paleontological the Pahranagat Range with the intent of finding petro-
identifications. leun reserves. One of these, Stanton, was reported by
Also appreciated are the Marathon Oil Company geol-  Hoggan (1975, p. 145) to have concluded that the sup-
ogists, Drs. Richard Rawson, David Beach, and Wilson  posed reefs in the Pahranagat Range and Mount Irish had
Herrod, who provided stimulating discussions concerning o similarities to the Devonian reefs in Alberta.
the rocks in this study. Thanks are extended to Steve Although Hoggan’s (1975) study was directed around
Smith and my brother, Winslow Williams, for helping demonstrating the differences between the Guilmette
with the fieldwork. Last, but not least, thanks to my Formation “reefs” and the Devonian reefs in Alberta, he
friends Anne Eberhardt and Sid Petersen for help in pre-
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measured only one section in the Pahranagat Range,
paring the manuscript. where the “reefs” had previously been reported. He mea-
sured seven other sections of Guilmette Formation, one in
PREVIOUS WORK each of the following ranges: Pequop Mountains (north-
Nolan (1935, p. 20) named the Guilmette Formation as

eastern Nevada), Leppy Range (northeastern Nevada),
follows: Confusion Range (southwestern Utah), Snake Range (east
, , ‘ , central Nevada), Egan Range (southeastern Nevada), and
G jgh: Gmtl;:l ette tf or;mtzm;}, ngmed C‘ff t?g Z\? uzlme'tte two in the Douglas Hills (southeastern Nevada). He con-
ulch, on the west side of the Deep Cree ountaz'ns, cluded that carbonate buildups in the Guilmette Forma-
forms the westernmost exposures of the range from Sim- . ) 1
) tion were best referred to as pelletal or lime mud banks,
onson Canyon northward to Sheridan Gulch, except for a e s
1 od bu th Wood even though he found one small reeflike buildup (3.7 m or
fzﬁsgﬁl areas ocoupiea by the younger Woodman o g thick) in the southern Douglas Hills.
rmation.

Recently, Dunn (1979) did a more detailed study of the
Since Nolan, work on the Guilmette Formation can be di-  “reef” in Mount Irish previously described by Reso (1963,
vided into two areas, (1) descriptive and correlative work, p. 909). She concluded that it was a bicherm which was
and (2) efforts to interpret the environment of deposition, located upon a local high created by debris flows, in con-
including defining the types of carbonate buildups pres-

trast to Reso’s (1963, p. 909) description of it as a “reef”
ent, such as reefs. This study deals with the problem of de- ~ which formed on a foundation biostrome.
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METHODS

Seven detailed stratigraphic sections were measured on
the main buildup (fig. 2), and one other, section 8, in the
ledges and cliffs below the southwest corner of the main
buildup. Of the seven sections, three (sections 2-4) were
measured on the west side of the buildup, three (sections
5-7) on the south side, and one (section 1) on the north
side. The distances between the measured sections are as
follows: 1-2 = 600 m, 2-3 = 700 m, 3-4 = 215 m, 4-5
= 100 m, 5-6 = 350 m, 6-7 = 2,816 m. The section far-
thest east on the south side, section 7, was selected mainly
for its distance from the main body of the buildup.

Because of the cliffs composing the sides of the buildup,
rappelling methods and equipment (rope, figure eight,
and a set of jumars) were used in measuring four of the
sections. Inasmuch as the entire buildup was almost all
peloidal limestone, differentiating units on lithologic
changes was not possible. Units were chosen and samples
collected every 3.2 m (10 ft) or less, to insure complete
tracking of the microlithofacies changes, except on the
first two sections measured, sections 3 and 5.

In the laboratory, standard 2” X 3" thin sections were
prepared. Two hundred twenty of them were studied
with both a petrographic microscope and a binocular mi-
croscope, to determine paleontology, diagenesis, and mi-
crolithofacies. Standard staining techniques with Alizarin
Red S were used to help distinguish the dolomitic portions
of the rock (Friedman 1959).

GEOLOGIC SETTING

During Frasnian time, the western edge of the North
American craton was located so as to divide the present
state of Utah into east and west halves. The position of
this edge of the ancient North American craton corre-
sponds roughly to Sandberg and Poole’s Mesozoic Sevier
thrust system (1977, p. 7-8). The ancient continental shelf
extended westward from this line, and included what is

presently western Utah and eastern Nevada, and was
bounded on the west by the Antler orogenic belt. Deposi-
tion of shelf sediments was influenced by both the Tag-
honic onlap (late Givetian, early Frasnian) which left a
broad, shallow shelf (Johnson and Sandberg 1977, p. 137),
and also by early tectonism in the Antler orogenic belt.

Hoggan (1975, p. 178-89) indicated that this continen-
tal shelf west of the ancient North American craton con-
tained two subsiding basins within a north-south-trending
miogeosynclinal trough. Stewart and Poole (1974, p. 29)
prefer the term miogeocline for this area to emphasize its
nonsynclinal wedge shape. It seems to be a more accurate
term inasmuch as Sandberg and others (1982, p. 117) date
the initial Antler “welt” at 3 million years after the end of
the Devonian, thus demonstrating that there was actually
open sea west of the continental shelf during the Devo-
nian, instead of a typical eugeosynclinal/miogeosynclinal
environment.

At present, the outcrop is exposed as a horst in the
northern Pequop Mountains as a result of basin-and-range
faulting. Several north-south-trending normal faults are
located on the west side of the outcrop. At least one
east-west-trending normal fault displaces the main build-
up, and there is another which is located below the south-
west corner of the main buildup, but it does not extend
through the main buildup. Because of the fault-controlled
stream valley to the south of the outcrop (in which Inter-
state 80 is presently located), the outcrop horst is isolated
on four sides and thus has the appearance of a butte or
small mesa.

MICROLITHOFACIES

One of the major objectives of this study is to trace the
microlithofacies changes, both vertically and horizontal-
ly, in this seemingly homogeneous body of peloidal lime-
stone (fig. 3) throughout its areal extent. There are ac-
tually five rock types, which are, in decreasing order of
relative abundance, packstone, wackestone, sandstone,

FIGURE 2.—Photograph of main buildup with sections measured, view froh the southwest.
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dolomite, and stromatolitic boundstone. Dunham’s (1962)
classification is followed here with two modifications: (1)
rocks that are grain supported but are surrounded by neo-
morphic spar are called packstones, assuming the neo-
morphic spar was originally carbonate mud, and (2) rocks
which contain more than 10% peloids but which are still
not grain supported are called wackestones, whether the
matrix is carbonate mud or neornorphic spar.

Changes in the microlithofacies which occur are subtle
and are significant in indicating both local currents and a
regional transgression/regression cycle. These changes
are reflected in the rock names chosen for the units and
are based on the following parameters: (1) number of pel-
oids (packstone or wackestone), (2) whether or not the
carbonate mud has altered to neomorphic spar (sparry or
muddy), and (3) whether or not intraclasts are present
(uniform or mixed fabric). One other facies change is the
occasional inclusion of quartz sand grains, which seems to
have minor significance.

PACKSTONE

Uniform Packstone

Uniform packstone is characterized by peloids of uni-

form size, about 0.1 mm but also has a minor fraction of

peloids ranging from 0.05 to 0.3 mm. Intraclasts are either
nonexistent or are less than 5% in the entire microslide. If
less than 50% of the mud matrix has recrystallized to neo-
morphic spar, it is considered to be a “uniform muddy

packstone”; otherwise, it is a “uniform sparry packstone”
(figs. 4, 5).

Mixed Packstone

Peloids range in size from 0.05 to 0.7 mm. There is no
dominant size, but rather a spectrum of sizes. Intraclasts
are common and range up to 30 mm long, but are general-
ly in the range of 0.5-3.0 mm. If less than 50% of the ma-
trix has recrystallized to neomorphic spar, it is considered
to be a “mixed muddy packstone”; otherwise, it is consid-
ered to be a “mixed sparry packstone” (figs. 6, 7).

WACKESTONE

Uniform Muddy Wackestone

Of approximately 200 units, only two, units 2.0 and 5.5,
are a uniform muddy wackestorie microlithofacies. Later-
ally, unit 2.0 changes to fine-grained dolomite with eu-
hedral erystals, and unit 5.5 is 20%-30% euhedral dolo-
mite crystals. Both are characterized by small mud
allochems about 0.05 mm in diameter and by crystals con-
tained in a mud matrix. Unit 2.0 contains calcite crystals,
whereas unit 5.5 contains dolomite crystals (fig. 8).

Mixed Wackestone

Peloids range from 0.06 to 0.7 mm in diameter, and in-
traclasts are up to 20 mm. There is no real dominant size
of the peloids, but there is a range of sizes. If less than 50%
of the matrix has recrystallized to neomorphic spar, it is

FiGURE 4. —Photomwrogmph of umform sparry packstone from unit 3 5; transmitted ltght X25.
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FIGURE 5.—Photomicrograph of uniform muddy packstone from unit 6.19; transmitted light, X25.

then considered to be a “mixed muddy wackestone”; thick. The sand grains are well rounded, and their size dis-
otherwise, it is a “‘mixed sparry wackestone” (figs. 9, 10). tribution is roughly bimodal; the two modes range from

0.05 to 0.4 mm (medium grained) and 0.7 to 2.5 mm
SANDSTONE (coarse to very coarse grained) (fig. 11). The grains are

Only one quartz sandstone unit occurs in the outcrop fractured, and the cement is calcareous. It is interpreted
studied; it is well exposed as the basal unit of sections 4 to be a very mature sand, possibly representing an ancient
and 5, a cross-bedded quartz sandstone approximately 2m  sand shoal.

FIGURE 6.—Photomicrograph of mixed sparry packstone from unit 1.24; transmitted light, X25. Arrow points to a foraminifera.
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FIGURE 7.—Photomicrograph of mixed muddy packstone from unit 5.2; transmitted light, X25.

STROMATOLITIC BOUNDSTONE

The stromatolitic boundstone unit is exposed at the top
of sections 1, 2, and 3. The extensive weathering and dia-
genetic effects have obscured all traces of the stromatolit-
ic lamination on the surface of the rock, but this facies is

500/,.

FIGURE 8.—Photomicrograph of dolomitic uniform muddy wackestone from the top of unit 5.5; transmitted light, X25. Arrows

point to zoned dolomite crystals.

easily recognized in thin section. As with other reported
occurrences of stromatolitic boundstone, the algae are not
preserved, but layers of sediment trapped by the algae
have been preserved in a laminated, fenestral fabric. Pel-
oids present in the laminae range from 0.1 to 0.4 mm; in-
traclasts range up to 20 mm in diameter (fig. 12).
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FIGURE 9.—Photomicrograph of mixed sparry wackestone from the top of unit 5.7; transmitted light, X25.

DOLOMITE AND DOLOMITIC UNITS

The main dolomite unit is a thin bed about 0.6 m thick,
which, upon a weathered surface, resembles a quartz
sandstone. This bed is easily correlated in the field be-
tween sections 2, 3, 4, 5, and 6. Sections 1 and 7 contain
dolomitic units which, when studied in thin section, seem-

FIGURE 10.—Photomicrograph of mixed muddy wackestone from unit 6.15; transmitted light, X25.
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ingly correlate well with this main dolomite bed. The
dolomite crystals are often euhedral and sometimes
zoned, ranging in size from 0.05 to 0.2 mm long (fig. 13).
Zoned crystals indicate several periods of growth. Each
of these periods of growth can be interpreted to have
been associated with fluids that actively replaced lime-
stone surrounding each crystal with dolomite. This inter-
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FIGURE 1la.—Photomicrograph of cross-bedded sand unit from
unit 4.0, also found at base of section 5. Transmitted light,
X12.5.

FIGURE 11b.~Cross-bedded sand unit, unit 4.0. Also found at
base of section 5.

pretation is supported by a facies change that occurs in
the main dolomite bed in unit 2.0. Unit 2.0 is a uniform
muddy wackestone, but laterally it changes to a fine-
grained dolomite. This facies change indicates that the en-
tire main dolomite bed was originally a uniform muddy
wackestone but has since been replaced by dolomite in all
but a few places. The only other occurrence of a uniform
muddy wackestone, unit 5.5, is about 20%-30% dolomite
(fig. 8) for a thickness of about 3 m. This is an area which
has been only partially replaced by dolomite. Close asso-
ciation of dolomite with the two occurrences of uniform
muddy wackestones implies that the uniform muddy
wackestones are the most susceptible to dolomitization.

Other occurrences of dolomitic units are restricted to
the units directly above and below the key dolomite bed.
In some sections dolomitization has spread, but most have
not been completely replaced as has the correlation dolo-
mite unit.

PALEONTOLOGY

Weathering, diagenesis, lichen, and Recent dissolution
have all combined to reduce the exterior of outcrops in
Pequop Pass to a nondescript meringuelike surface. Con-
sequently, megafossils were found more frequently as
fragments in thin section than as entire entities in outcrop.
Common megascopic fossils found in outcrop include gas-
tropods (generally planispiral, although one exceptional
15-cm high-spired specimen was found), straight nauti-
loids, algal oncoids, and both hemispherical and ramose
stromatoporoids.

This study was of rocks too young to include the Give-
tian Stringocephalus brachiopod described by many who
have done previous work with the Guilmette Formation.
Also, the writer did not find the tetracorals and crinoid
columnals Hoggan (1975, p. 181-82) recorded at the top
of his measured section in the Pequop Mountains. How-
ever, they were found in the overlying Lower Mis-
sissippian rocks.

UPPER DEVONIAN

The most useful fossils collected were the hemispheri-
cal stromatoporoids, four of which were identified by St.
Jean (personal communication 1982) as follows: two spec-
imens of Stromatopora cygnea, one of Talaeostroma stele-
forme (fig. 14ab,c), and one of PTrupetostroma. On the
basis of these fossils, Dr. St. Jean placed the age of this
portion of the Guilmette Formation as Frasnian (personal
communication 1982). ' ’

St. Jean also pointed out that the stromatoporoids have
microdiastems in their coenostea (fig. 15), indicating that
at times the environment was less than ideal for stroma-
toporoid growth, and that the stromatoporoids were
forced to recommence growth over layers of sediment de-
posited within their coenostea. The abundant carbonate
mud (most of which has altered to neomorphic spar)
found in the thin sections indicates that the environment
was relatively turbid. Lecompte (1956, p. F126) described
the preferred habitat of hemispherical stromatoporoids as
clean, without a muddy bottom. ‘

Hemispherical stromatoporoids are generally found as -
reef builders in Givetian and Frasnian rocks in other parts
of the world (Klovan 1964, Playford and Lowry 1966,
Krebs 1974). Hemispherical stromatoporoids are similar
to many reef organisms in that they apparently thrived
best in turbulent, sediment-free water. They are com-
monly found in association with calcareous algae which
help bind the reef into a solid mass. ‘

In this study, several types of calcareous algae were
found. A preliminary sampling of the algae was submitted
to Dr. John Wray, who verified the presence of solenopo-
racean algae in the few samples sent. For subsequent iden-
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FIGURE 12.—Photomicrograph of stromatolitic boundstone (algal mat) from the top of unit 3.9; transmitted light, X10.

FIGURE 13.—Photomicrograph of “correlation’” dolomite unit, unit 4.2.9; transmitted light, X25.
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tifications of calcareous algae, the writer used Wray’s
(1967) publication on Australian Devonian calcareous al-
gae from the Canning Basin.

The samples are (fig. 16a,b,c,d,e.f) tentatively identified
as follows: (1) Rhodophycophyta (red algae), five genera:

FIGURE 14a.—Photomicrograph of Stromatopora cygnea from
unit 4.16; transmitted light, X5.

4 S s

FIGURE 14b.—Photomicrograph
fromunit 5.6; transmitted light, X5.

of Talaestroma steleforme

Solenopora? sp., Parachaetetes? sp., Stenophycus? sp. (fig.
16a), Keega® sp. (fig. 16b), and Tharama? sp. (fig. 16¢); (2)
Chlorophycophyta (green algae), two genera: Litanaia?
sp. (fig. 16¢) and Ortonella? sp. (fig. 16d); and (3) un-
known, two specimens (fig. 16f). Playford (1980, p. 8, 9)
described algae as being major reef constituents in the
Canning Basin during the Givetian and Frasnian, and as
being the dominant reef constituent during the
Famennian,

Wray (1967, p. 9, 10) discussed the distribution of these
genera in the various reef-associated facies. Though they
all occur in a variety of facies, their major occurrences are
as follows: Solenopora, fore-reef, reef, and back-reef;
Parachactetes, reef and back-reef; Litanaia, reef; Orto-
nella, post reef; Tharama, reef; Keega, reef. Many of the
algae found in the Pequop Mountains are found as in-
traclasts, indicating transport from their original growth
site. There is no organized pattern in which the algae oc-

FIGURE 15.—Photomicrograph of diastem contained within a
stromatoporoid’s coenostea, demonstrating marginal adapt-
ability to the environment, unit 4.17; transmitted light, X7.5.

FIGURE l4c.—Photomicrograph of PTrupetostroma sp. from
unit 1.21; transmitted light, X5.
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cur here, an indication that the algae were not localized
into specific communities but grew wherever conditions
temporarily permitted.

Amphipora sp. are found in great abundance in the sec-
tion measured below the main buildup. Krebs (1974, p.
187, 188), Klovan (1964, p. 33), and Playford and Lowry

FIGURE 16a.—Photomicrograph of calcareous alga PSteno-
phycus sp. from unit 5.2; transmitted light, X12.5.

from unit 4.7; transmitted light, X12.5.

FIGURE 16c.—Photomicrog
sp. from unit 5.18; transmitted light, X12.5.

FIGURE 16b.—Photomicrograph of calcareous alga PKeega sp.

raph of calcareous alga PLitanaia

(1966, p. 49, 50) all discussed Amphipora as characteristic
of the back-reef facies. On the basis of the great abun-
dance of Amphipora in the lower ledges, the writer inter-
prets those limestone units as representative of back-reef,
lagoonal environments.

Calcispheres are common in the rocks and are easily

FIGURE 16d.—Photomicrograph of calcareous alga POrtonella
sp. from unit 6.18; transmitted light, X12.5.

FIGURE 16e.—Photomicrograph of calcareous alga PTharama
sp. from unit 1.14; transmitted light, X31.5.

-]

FIGURE 16f.—Photomicrograph of calcareous alga of unknown
genus from unit 5.7; transmitted light, X5.
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recognized. In general, calcispheres are problematical as
to their affinities, but Stanton (1963, p. 417) suggested
that they are a type of plant spore or reproductive body.
Stanton (1963, p. 415) stated that the fossils character-
istically associated with calcispheres are Amphipora and
Paratharammina. Because of this association, many work-
ers infer that the presence of calcispheres indicates back-
reef facies. However, the small, spherical shape of this or-
ganism suggests easy transport, and so it is probably unre-
liable as a specific facies indicator. In this study of the
Guilmette Formation, they are found both with and with-
out Amphipora, so no facies interpretation is based on
them.

Foraminifera and straight nautiloids are also easily
transported: Not much literature is available on facies dis-
tribution of Devonian straight nautiloids or foraminifera.
The writer interprets the presence of these organisms in
the study area as indicating that the animals possibly
floated in from deeper water.

Brachiopods and gastropods in the sections were not
found preserved well enough to permit much detailed pa-
leontologic work to be done with them, although else-
where Merriam (1940) found abundant, well-preserved
faunas. In this study, the presence of brachiopods and gas-
tropods is interpreted as indicating intertidal to subtidal
water depth. Crinoid ossicles were also found in limited
numbers and are also poorly preserved. They suggest en-
vironments of normal-marine salinity. The presence of
stromatolitic algal mats at the top of sections 1, 2, and 3
~ also generally indicates an intertidal to subtidal water
depth. Because of the intense weathering, these algal units
were not easily recognized in the field but are apparent in
thin section. Stromatolitic algal mats are usually inter-
preted as indicative of intertidal to subtidal water depth.
One exception has been found in rocks of the same age in
Western Australia by Playford and Cockbain (1969). They
reported some forms that grew on fore-reef depositional
slopes in water at least 45 m deep. Stromatolitic units
from the Guilmette Formation are interpreted as in-
dicative of subtidal water depth.

Sections of the Guilmette Formation in this area con-
tain a significant number of very large algal oncoids. They
range from 10 mm to about 12 cm in diameter. In thin
section, only micritic layers alternating to a lesser degree
with peloidal layers are preserved. The layers are not
crinkly (see Flugel 1982, p. 138). According to Wilson
(1975, p. 69), oncoids which occur in a micrite are charac-
teristic of a shallow-water, back-reef environment. Guil-
mette Formation oncoids are sometimes associated with
sediments which are muddier than the sediments above
and below. Playford (1976, p. 9, 10), described the facies
of the Upper Devonian reef complex in the Canning Ba-
sin, Western Australia, and listed oncoids in both the bank

and the back-reef subfacies. He also noted that the on-
coids in the back-reef subfacies occur mainly where the
reef is absent or weakly developed. In addition to these
occurrences, he also noted (Playford 1976, p. 19) that the
oncoids form on top of the reef and cascade down the
sides, forming deposits of oncoids in the flanking beds.
Oncoids are also often associated with deposits that show
evidence of currents (Flugel 1982, p. 144).

Finally, the ostracodes in this study were found only as
cross sections in the microslide thin sections. They are
fairly ubiquitous and range from fresh and brackish water
to normal-marine environments, and also occur at a great
variety of depths. However, they seem to be most abun-
dant in shallow seas of the shelf areas (Benson 1961, p.
Q60). Because of their ubiquitous nature, not much can be
said about them in relation to this study. However, Ben-
son (1961, p. Q58, Q62) indicates that most fossil ostra-
codes were crawlers; burrowers, and near-bottom swim-
mers, and that Recent ostracodes are often associated with
sediment-trapping grasses such as Thalassia and Zostera.
Therefore, even though these grasses are not preserved in
the rock record, it is possible that the presence of ostra-
codes implies that sediment-trapping grasslike plants
(e.g., algae comparable to modern Halimeda or Penni-
cilus) may have been present.

LOWER MISSISSIPPIAN

Conodonts were found in the unit overlying the Guil-
mette Formation, which has been mapped as Joana Lime-
stone (Thorman 1970, Hope and Coats 1976), but may be
the Tripon Pass Formation (Charles Sandberg personal
communication 1983).

Conodont identifications were verified by Dr. Charles
Sandberg (personal communication 1983); those identi-
fied were Polygnathus sp., Polygnathus longiposticus,
Siphonodella quadruplicata, Siphonodella isosticha, Poly-
gnathus inornatus, Bispathodus sp., Hibbardella sp., and
Polygnathus communis (fig. 17). This assemblage is of
Kinderhookian (Lower Mississippian) age. :

DEPOSITIONAL MODEL

Section 5 has several distinguishing characteristics that
differentiate it from other sections in the study area. Mea-
sured from the top of a bed found in the base of both sec-
tions (the “correlation” dolomite), séction 5 is 6 m thicker
than section 4, which is only 100 m distant (see fig. 3).
Also, it has a greater abundance of stromatoporoids than
any of the other sections, and it has flanking beds that lap
onto it from the south (fig. 18). In common with section 4,
it is also overlain by a paleomicrokarst unconformity (fig.
19), it is underlain by a cross-bedded sandstone unit (fig.
11), and the majority of the upper part of the section is
composed of wackestone rather than packstone.
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FIGURE 17.—SEM photomicrographs of Kinderhookian conodonts taken from the Joana Limestone, which unconformably overlies
the Guilmette Formation: (1) Polygnathus sp., X50; (2) Hibbardella sp., X45; (3) Polygnathus longiposticus, X50; (4) Bispathodus
sp., X45; (5) Bispathodus sp., X50; (6) Polygnathus communis, X80; (7) Siphonodella quadruplicata, X50; (8) Polygnathus
inornatus, X100; (9) Siphonodella isosticha, X50; (10) Polygnathus inornatus, X50.
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These characteristics are similar to many of those listed
by Wilson (1975, p. 364~69) and James (1978, p. 20-22) as
representative of a mound. Wilson (1975, p. 364) included
banks in his definition of mounds though some prefer to
make this distinction: a bank may have a more tabular
shape, and a mound a more hemispherical shape (James
1978, p. 20, 21; Heckel 1974, p. 93-96).

Important characteristics of a mound are listed by
James (p. 21). They include stage 1, basal bioclastic lime
mudstone to wackestone pile; stage 2, lime mudstone or
bafflestone core; and stage 3, mound cap—thin layer of
encrusting or lamellar forms, occasional domal or hemi-
spherical forms, or winnowed lime sands. In discussing
why such mounds grow from deeper, quieter water up-
ward to above wave base, Wilson (1975, p. 366-67) gave
the following reasons: (1) mechanical accumulation of
both fine and coarse sediment through current and wave
action (probably the most important process localizing
mound growth); (2) trapping and baffling of carbonate
sediment produced locally at higher than normal rates
(probably the most important process contributing to the
growth of the mound); (3) stabilization of sediment by sur-
face encrustation so that normal processes of marine ero-
sion do not remove it; (4) protection by a veneer or wall of
frame-building organisms at a late stage in its devel-
opment; and (5) protection by cementation. In lime mud
deposited and remaining in the marine environment, ce-

FIGURE 18.—Photograph of flanking beds on mound (between arrows). View from the southwest, section 4 to the north.

Joana
Limestone

ey I . Xz

mentation commonly is often very slow (unless early sub-
marine cementation occurs). In shallow-water banks,
where chances of subaerial exposure are better, lithifica-
tion of lime mud is more effective.

Wilson (1975, p. 367), in discussing the bioclastic
wackestone at the base of the mound, stated, “The origin
of these piles cannot be generally understood; presumably
they are heaped up by gentle currents.” Also, in eval-
uating mound origins (1975, p. 365-66), he discussed how
the base of the mound, along with its underlying beds, is
usually the least studied. Therefore, the presence of con-
siderable fossil debris in the basal wackestone is an ele-
ment commonly associated with mounds, but the pres-
ence of fossils does not seem to be a critical element.
Jamieson (1971, p. 1309-11), in her study of the Devonian
reefs in Canada, demonstrated that existence of a “gravel”
bed of fossil debris is necessary for later growth of reef or-
ganisms. Some fossil debris exists at the base of the
“mound” in section 5. Stromatactis is another element
commonly found in mounds that is not well understood.
Early workers felt that it represented evidence of soft-
bodied organisms that had not been preserved. Now it is
thought to be a result of diagenesis (Burchette 1981, p.
130). No stromatactis is found in the mound in section 5.

The major difference between an idealized mound and
the “mound” in section 5 is the lack of fossil evidence of
obvious baffling organisms that trapped mud. Most
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FIGURE 19.—Unconformable contact between the Guilmette
Formation and the Joana Limestone (arrow), with paleomi-
crokarst topography upon the Guilmetite Formation; view from
the south. Independence Valley in the background.

mounds have a significant amount of fossil debris which
obviously acted as a baffling agent and trapped sediment,
thereby building up the mound into a morphological high.
According to the list that Wilson (1975, p. 368) gave, an
idealized mound in the Devonian should have a signifi-
cant amount of bryozoan debris mixed throughout the
muddy wackestone core. However, large Mississippian
Waulsortian mud mounds lack major numbers of large or-
ganisms. They commonly contain only small percentages
of crinoid and bryozoan debris that constitute no more
than 20% of the rock. According to James (1978, p. 22),
the development of most mounds can be explained in
terms of a combination of baffling organisms, encrusting
organisms, and possible shaping by currents and storms.
Waulsortian mounds present a special situation in that
they display topographic relief above the ancient sea floor
but lack fossil evidence that explains why such muddy
sediments were able to accumulate in such relief.

The low mound at section 5 (approximately 7 m thick)
is a little like the enigmatic Waulsortian mud mounds in
that it seems to have had topographic relief above sur-
rounding sediments, as evidenced by the flanking beds
and thicker section. However, it lacks obvious fossils that
could have acted as baffles to trap sediment into a local
mound. There are a few possible explanations that might
help explain why sediments accumulated into a mound in
section 5. First, there are considerably more stromatopo-
roids in section 5 than in other sections. However, field-
work completed to this point suggests that there were not
enough to create a small, muddy reef. Second, this mound
could have been built by sediments localized by currents.
The cross-bedded sand shoal (fig. 11) at the base of the
section indicates that at an earlier time, currents were sig-
nificant in localizing inorganic sediments. Third, there
could have been a baffling organism trapping sediment,
which, after it died, left no fossil evidence of its existence.

Baars (1963, p. 120-27) discussed the ability of modern-
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day sea grasses, such as Thalassia testudinum, to baffle
and trap sediment in the Florida Bay, thereby creating
banks. As was discussed earlier, modern marine ostracodes
are not often found inhabiting sea floors which are simply
mud, but are commonly found in association with sea
grasses such as Thalassia. Even though the ostracodes are
not abundant throughout the study area, their presence
suggests the possibility of the existence of some sort of an-
cient grasslike plant that may have acted to baffle and
trap sediment.

A fourth possibility, though a fairly new concept, is the
possibility of early submarine cementation. Playford
(1980, p. 819-20, 830-33) discussed the significant role
that early submarine cementation played in the formation
of the Late Devonian reefs of the Canning Basin, Austra-
lia. Schmidt (1971, p. 209-15) discussed early cementa-
tion in the Middle Devonian bioherms of Canada. Gins-
berg (1971), Land (1971), and Shinn (1971) all discussed
early marine cementation. Throughout the study area,
there are occasional evidences that early cementation
may actually have occurred. These include isopachous
rim ghosts (fig. 20), geopetal structures, and non-
compacted sediment and fossils. At this point, it is diffi-
cult to say which, if not all, of these played a part in mak-
ing it possible for sediment in the top of section 5 to
accumulate to be a topographically higher mound than
the surrounding sediment.

Finally, the mound grew up above wave base into an
environment more suited for stromatoporoids, a little less
muddy and a little more turbulent, and was capped by a
stromatoporoid colony (fig. 21). Sections 1 and 6 show
similar moundlike characteristics at the same strati-
graphic level as section 5, a series of wackestones capped

- by stromatoporoids, but on a much smaller scale. These

sections show no evidence of relief above the surrounding
sediments, so they do not seem to be actual mounds; how-
ever, they could probably be considered as proto-mounds.

One of the most influential factors on deposition in this
area was a worldwide transgression throughout the Fras-
nian, with a worldwide regression at the end of the Fras-
nian (Playford 1980, p. 826; Johnson 1974). Guilmette
Formation stratigraphic columns show (fig. 3, esp. sec-
tions 2 and 6) local effects of the transgression. Sections
begin with deposits characteristic of shallow, high-energy
water, such as peloidal limestone with both mixed and
uniform fabrics. The main difference between these two
peloidal limestones is the inclusion of small intraclasts in
the mixed fabric. These small intraclasts probably in-
dicate minor, local variations in the energy on the Devo-
nian continental shelf, possibly due to current action.
Wackestones above these units become increasingly more
common and thicker, and probably represent deeper wa-
ter, but possibly not more than 20 m deep. Mounds, proto-



182 W.L. WILLIAMS

Wi S g nER. K 2y

mounds, and oncoids are associated with these wacke-
stone units. This wackestone facies demonstrates charac-
teristics of back-reef facies found in the rocks of the same
age in other parts of the world. To date, no actual reef has
been substantiated in the Guilmette Formation, so it is not
strict usage to call this a back-reef facies, though it is sim-
ilar. Another zone of peloidal packstone occurs above the
wackestone and represents a return to shallower water
and higher energy conditions during the regression. It was
during this time that the stromatolitic algal mats devel-
oped. This event had two effects in this area, (1) devel-
opment of a microkarst topography upon the surface of
the area near sections 4 and 5, and (2) growth of algal mat
as the sea shallowed in the areas of sections 1, 2, and 3.

DIAGENESIS

It is beyond the scope of this paper to describe the en-
tire diagenetic history of the Guilmette Formation in this
study area. However, several interesting postdepositional
features will be discussed. The most recent events are the
emplacement of chert and the intrusion of iron-bearing
solutions. Chert generally occurs in ribbons from 1 to 7.5
cm wide and several meters long. It cuts across bedding
and seemingly follows fault-related joints, especially in
the overlying Lower Mississippian rocks. Because of their
fault relationships, they are interpreted to have been
emplaced during or after the Laramide orogeny.
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FIGURE 20.—Long intraclast indicated by arrows has a possible ghosted isopachous rim, unit 2.7; transmitted light, X25.

The iron-bearing solutions have selectively traveled
along fault breccias and have mineralized these zones,
leaving gossans in some places. Since these iron-bearing
solutions are also fault controlled, they were probably in-
troduced in the Cretaceous or later.

Syndepositional iron also occurs as limonite pseu-
domorphs after pyrite. These pseudomorphs do not have
any pattern of occurrence but are disseminated in differ-
ent parts of the sections as both euhedral and anhedral
crystal forms 0.05 mm to 0.06 mm across. In spite of the
usual association of pyrite with deep-water limestones,
this pyrite was formed in shallow water, similar to that
studied by Lambert in the Moenkopi Formation in south-
ern Utah (Ralph Lambert personal communication 1938).

There are two occurrences of dolomite in the study
area. The major occurrence is in the “correlation” dolo-
mite (fig. 13) found near the base of most of the sections.
Associated with the “correlation” dolomite are minor
dolomitic units that may occur either above or below that
distinctive bed. The other occurrence is in unit 5.5 of sec-
tion 5 (fig. 8).

Although dolomite interfingers with limestone in
places, suggesting a syndepositional origin, the best model
to explain the origin of these dolomites is that proposed
by Mattes and Mountjoy (1980, p. 272-75) for the dolomi-
tization (type 2) of the upper Devonian Miette buildup in
Alberta. They suggested that, after burial, brines from the
adjacent basin sediments circulated through the sediments
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in question and selectively dissolved and replaced lime-
stone matrix. For the Guilmette Formation, the brines
would have been derived from the underlying lagoonal
sediments. The writer feels that this is the best model to
explain the formation of dolomite in the Guilmette For-
mation for the following reasons: (1) dolomite in unit 5.5
(fig. 8) is zoned, implying a long-term dolomitization pro-
cess; (2) dolomite in the “correlation” unit replaces the ex-
isting rock, being more strongly replaced in some areas
than others, but is missing at the base of section 2, im-
plying that some portions of the rock are more resistant to
dissolution than others, or that permeability was absent;
and (3) there was no nearby source of fresh water to create
the brine refluxing to which many workers attribute
dolomitization.

The most significant aspect of the diagenesis in these
rocks is the occurrence of neomorphic spar. The major
criterion used in this study for differentiating neomorphic
spar from cement spar was the presence of inclusions in
the neomorphic spar, giving it a “dirty” look. In addition,
the neomorphic spar occurs adjacent to muddy areas
which have not been replaced. Bathurst’s guidelines of
neomorphic spar characteristics (1975, p. 484-91) and ce-
ment fabrics (1975, p. 417-20) were also used.

All of the sparry matrix in the rocks in this area is neo-
morphic spar. Such abundant neomorphic spar makes it
difficult to determine whether or not early cementation
has taken place. Early cementation is generally character-
ized by the presence of isopachous rims of aragonite or
high Mg calcite, which normally invert later to low Mg
calcite. Neomorphic spar disguises these isopachous rims
(see possible rim ghost, fig. 20), and makes it difficult to
determine whether the rims actually existed. After careful
inspection of areas where neomorphism was less intense,
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FIGURE 21.—Idealized depositional model of mound and sur-
rounding shelf sediments, view from the southwest.

183

it was concluded that early submarine cementation prob-
ably did not play a major role in the diagenetic history of
these rocks.

In addition to the aggrading neomorphism of the car-
bonate mudstone to neomorphic spar, strained calcite oc-
curs in minor amounts. However, no evidence was found
to indicate neomorphic recrystallization of the strained
calcite to a more stable form (see Bathurst 1975, p.
475-84). The straining of the calcite in figure 22 could
have been caused by (1) late crystal growth or (2) com-
paction of overlying sediments.

Stylolites are also significant, though not abundant;
they also occur occasionally as microstylolites. Bathurst
(1975, p. 465, 470) concluded that stylolitization must
take place after cementation, because it transects ce-
mented matrix, but must occur before cementation is en-
tirely finished in order to give the dissolved calcite a place
to go. He stated (1975, p. 470) that material removed by
stylolitization is actually a good source of cement in the
rock, and that cementation by stylolitization represents
the end of porosity. Essentially, the low porosity and per-
meability of the rocks of this study may be due in part to
stylolitization.

ECONOMIC SIGNIFICANCE

Beds of similar age to the Guilmette Formation are pro-
lific hydrocarbon producers in Alberta, Canada. In eval-
uating the rocks of this area as potential hydrocarbon pro-
ducers, one must take several parameters into
consideration. Is this formation a source rock? What char-
acteristics does this formation have as a reservoir? Is there
an effective seal to trap hydrocarbons?

It is necessary for rocks to contain at least 3% organic
material on a dry weight basis to be able to generate hy-
drocarbons (Bissell personal communication 1983). Re-
gional work by the writer and others demonstrates that
the Guilmette Formation does bave a potential for at least
3% organic carbon in some areas, a good portion of it
being produced by algae. Other potential source rocks in
the area include the Mississippian Joana Limestone,
which was a source to the currently producing volcanic
tuffs in Railroad Valley (Doug A. Sprinkel, Placid Oil Co.,
oral communication 1983). Although the Joana Limestone
unconformably overlies the Guilmette, occurrences of
source rocks overlying host rocks have been reported (Pye
1958, p. 196).

In this area, the Guilmette Formation has two types of
potential reservoir units within it, (1) the sandstone shoal
and (2) dolomitic units. In oxder for these units to serve as
reservoir rocks, migration and entrapment of hydro-
carbons would have had to occur previous to complete ce-
mentation. As indicated by the zoned dolomite and the
presence of stylolites, permeability existed at some point.
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FIGURE 22.—Strained calcite from unit 2.7; transmitted light, X63.

If the proper source rock (or even if the Guilmette For-
mation itself acted as a hydrocarbon source) was adjacent
to one of these units at the proper time, these units could
serve as reservoir rocks.

It is not entirely clear if the mounds could serve as host
rocks. In unit 5.5 there is a wackestone similar to that
which makes up the core of the mound. This unit is about
20%-30% zoned dolomite, indicating that permeability
existed during dolomitization. If the core of the mound
were dolomitized, which does not seem unlikely, it could
serve as a reservoir rock. The fact that the dolomitizing
solutions flowed through the wackestone previous to do-
lomitization indicates that permeability existed in the
wackestone, so the mounds could possibly be reservoir
rocks.

The only potential seal found was simply the facies dif-
ference between the “correlation” dolomite unit and the
surrounding rock, which implies a difference in per-
meability. The surrounding rock was only partially do-
lomitized, perhaps because of a number of factors. If,
however, it was simply because of a difference in per-
meability, that facies change might serve as an effective
trap for hydrocarbons.

Also, while the mound in section 5 was in a late period
of development, algal mats were forming contempo-
raneously just a short distance away because of the regres-
sion which was occurring. Anhydrite is often associated
with algal mats, and if it overtook the mound in some
other area of mound development, it would then serve as

an effective trap. In addition, in some areas the Guilmette
Formation is overlain by the Famennian Pilot Shale. If
this shale were found in a mound-producing area of the
Guilmette Formation, it too could serve as an excellent
seal because of its high impermeability.

Other than hydrocarbon potential, the Guilmette For-
mation has some economic mineral potential. As was pre-
viously discussed, iron-rich solutions have mineralized
some fault breccias in the area. The writer fire-assayed a
sample of one of these zones for gold, silver, and plati-
num. No measurable amounts of noble metals were found.
In addition, section 7 was fire-assayed by Dr. Willis Brim-
hall for microscopic noble metals. Unit 2 of section 7 con-
tains about $10.00/ton of microscopic gold and silver.

CONCLUSIONS

The Guilmette Formation has been studied by various
workers in an effort to find similarities between it and
characteristic Devonian reef formations throughout the
world. Because hydrocarbons are commonly found in as-
sociation with these characteristic reef facies, much of the
work done by petroleum companies on the Guilmette
Formation has not been published. Nevertheless, up to
this point, no well-documented reef has been discovered
in the Guilmette Formation.

This study indicates that during the continental shelf
deposition of Nevada in Frasnian time, conditions existed
that permitted growth of mounds in an environment sim-
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ilar to the back-reef facies of Frasnian-age reefs in other
parts of the world. These mounds are similar to those de-
scribed in the literature but have the following minor dif-
ferences: (1) lack of diagenetic stromatactis structures and
(2) lack of obvious fossils which acted as baffling organ-
isms in the main body of the mound. Regression followed
mound deposition, with a resulting erosional uncon-
formity, producing the sequence Frasnian Guilmette For-
mation overlain by Kinderhookian Joana Limestone. The
period of time not represented by the rock column is
about 5 million years.

Diagenesis is a major determinant of the economic po-
tential of the rocks in this study. The Guilmette Forma-
tion has potential both as a reservoir and a source rock of
hydrocarbons, with algae contributing greatly to the 3%
dry weight carbon necessary for hydrocarbon production.
In the area studied, maturation of organic carbon had not
taken place, and cementation and neomorphic alteration
of carbonate mud have effectively destroyed per-
meability. However, interbedded dolomite units and
sandstone beds occur, which, under conditions of early hy-
drocarbon migration, could serve as excellent reservoirs.
Stylolites and zoned dolomite crystals indicate that the
rocks were permeable for a period of time.
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