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A Geologic Analysis of a Part of Northeastern Utah
Using ERTS Multispectral Imagery®
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ABSTRACT

A study area encompassing approximately 11,230 km? in northeastern Utah has been analyzed using
multispectral ERTS imagery. Six hundred fifty-one linears and 116 associated annular structures have been
identified. Nine megalineaments (over 100 km long) are present in the area, and their mutual intersections
appear to be important controls of mineralization and petroleum accumulation possibly facilitated by
intersection generated fracture permeability. Comparison of linear patterns and geophysical data indicate
four separate tectonic blocks within the study area. A histogram of lineation trends compared with earlier
studies provides favorable evidence for regional control of major linear trends in the Colorado Plateau and

the Uinta-Wasatch transition zone.
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INTRODUCTION

OBJECTIVE

The objective of this study is to discern and interpret
the geologic significance of several major and minor lin-
ear features found in the study area (fig. 1). The study of

these linear features is based upon a correlation of
geophysical, geomorphic, economic, and structural data.

LOCATION

The study area is an approximately 11,230-square-kilo-
meter tract located in northeastern Utah (fig. 1). The
study area contains portions of the following major phys-
iographic units: the Middle Rocky Mountains, the Colo-
rado Plateau, and the Basin and Range.

Thirteen geomorphic subdivisions of Utah (Stokes
1977) are represented in the study area (fig. 2). They in-
clude the Uinta Mountains, the Wasatch hinterland, the
Wasatch Range, the Wasatch Front valleys, the Book
Cliffs-Roan Plateau section, the Wasatch Plateau, and the
Uinta Basin. Present, in part, are the Gunnison Plateau-
Valley Mountains section, the Pavant Range-Canyon
Range section, the Sanpete-Sevier Valley section, and the
Mancos Shale lowland.

PREVIOUS WORK

Many papers have been published concerning the study
area, but only a few are pertinent to this study. These in-
clude the following: Gallacher (1975) presented a report
“Fractures and Surface Lineaments in Northeastern
Utah.” A study utilizing lineament analysis to define
structural and stratigraphic anomalies was published by

*A thesis submitted to the Department of Geology, Brigham Young University, in partial fulfiliment of the requirements for the degree Master of )

Science, December 1980.
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Johnson in 1976. Levandowski and others (1976) studied
lineaments and aeromagnetic anomalies and their rela-
tionships to the geologic structure of north central Ne-
vada. Taranik and Trautwein (1976) discussed the in-
tegration of geologic remote-sensing techniques (mostly
multispectral Landsat data) with subsurface analysis. Pe-
terson (1976) presented an analysis of curvilinear features
detected from Landsat imagery as a method for defining
probable areas of high fracture porosity and permeability.
Johnson (1976) reported a comparable study of a different
area. Ritzma (1976) discussed the Towanta Lineament in
northeastern Utah. Erickson (1976) discussed the econom-
ic importance of the Uinta-Gold Hill trend. Smith (1976)
mapped arcuate surface patterns (curvilinears) in the
southwestern United States. Salas (1977) reported on the
relationships of linear features to mineral resources in
Mexico, using multispectral Landsat data. The tectonic
history and structure of the Indianola Quadrangle was
treated by Runyon (1977). Taranik (1978) wrote two use-
ful papers: one dealing with the characteristics of the
Landsat multispectral scanning system and the other
treating computer processing of Landsat data for geologic
applications.

METHODS OF INVESTIGATION

NASA ERTS image 5544-16413 (fig. 3), acquired by
Landsat-2 on 14 October 1976, was selected for this study

vvvvvvvv

(LN

FIGURE l.—Index map of the study area illustrating the
Wasatch-Uinta transition zone and surrounding area.

because essentially no cloud cover is displayed. Topo-
graphic features, because of low sun angle, are displayed
with excellent contrast. Black and white prints (185 mm
X 185 mm, 1:1,000,000 scale) in each of the four avail-
able bands (band 4, green; band 5, red; band 6, near in-

‘frared; and band 7, near infrared) along with black and

white positive transparencies (185 mm X 185 mm,
1:1,000,000 scale) in each of the four bands were ob-
tained. False color composite images, which are prepared
by exposing three of the four black and white bands
through different color filters onto color film are also
available. A 5330 mm X 530 mm, 1:365,000 scale false col-
or composite print (bands 4, 5, and 7) was also used. A
smaller scale (1:1,000,000 scale) false color composite
negative transparency in the 185 mm X 185 mm size was
also used.

Skylab photographs, 83-301, 83-302, and 83-303, taken
from an altitude of 430 km were used for a part of the
study area. These photographs cover a large portion of
the study area and were especially useful because over-
lapping coverage gave opportunity for stereoscopic ex-
amination. Only a small portion of the northwest corner
of the study area was not studied stereoscopically using
satellite imagery.

Transparencies in each of the four black and white
bands and the false color composite negative trans-
parency were projected onto a screen using an overhead
projecter. Linears, lineaments, megalineaments (figs. 3, 5)
and annular features (fig. 6) were noted. Black and white
prints in each of the four bands were examined on a light
table. The light table was also used in the examination of
the false color composite print. Examination of band 7 in
both the transparencies and the prints was the most
informative.

A lineation map (fig. 4) was prepared from the synthesis
of information from each image excluding all linears less
than 4 km in length. This was compared with the lineation
map created from the false color composite print alone.
Excellent correlation was noted. This lineation map was
compared with structural, tectonic, geomorphic, geo-
physical, and economic data. Analysis of lineation trends,
length, and intersection frequency was performed. A his-
togram of lineation trend was prepared (fig. 12): Data of
lineation intersection frequency and lineation density
were computer processed utilizing the SYMAP program
in an IBM 360, resulting in machine-generated contour
maps (figs. 13, 14).

GEOLOGIC SETTING

GENERAL STATEMENT

The geologic and tectonic history of the study area is a
complicated aggregate of events profoundly influenced
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by tectonic events along the nearby Wasatch-Las Vegas
hingeline. This persistent geologic feature is traced in
Utah from southwestern to northern Utah near the
Wyoming border and has controlled sedimentation, via a
yoked relationship, on either side of it. The study area lies

189

The area has been the locus of numerous multi-
directional forces. Tectonic features of several major oro-
genic pulses have overprinted the area. They include the
Cordilleran geosyncline, the ancestral Rocky Mountains,
the Sevier orogeny, the Laramide orogeny, formation of
the Green River and Flagstaff Lakes, Oligocene intrusive

east of this hingeline.
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FIGURE 2.—Drainage map with geomorphic provinces (adapted from Stokes 1977).
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and extrusive episodes, and Miocene to Recent taphro-
genic events. Many swface features of these events re-
main uninterpreted.

GEOLOGIC HISTORY

Hintze (1973) divides Utah geologic history into six
phases.

Phase I

During Precambrian to Devonian time, the study area
was situated in a shallow-marine environment, not unlike

the Bahamas Bank of today.

FIGURE 3.—ERTS image 5544-16413, covers all of study area and surrounding areas. Utah Lake is in the west central portion.

Phase 11

From Mississippian to Early Triassic, a reversal in sedi-
mentation direction occwrred, with concomitant forma-
tion of deeply subsiding marine basins and adjacent up-
lifts. The Oquirrh Basin and the Uncompahgre Uplift of
this period are important structures in the study area.

Phase 111

The Late Triassic to early Cenozoic phase saw the Se-
vier orogenic belt shedding sediments eastward into ma-
rine and nonmarine depositional basins and represents a
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complete reversal of sedimentation from Phase I. The Un-
compahgre Uplift continued to rise and extended its in-
fluence to the northwest via the Northern Utah Arch, at
least as far as the Raft River Mountains in northwest Utah
(Heylman 1959).

Phase IV

From Late Cretaceous to Eocene, high-angle faulting
and uplift of the Laramide orogeny occurred. It included
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the rise of the Uinta Arch and the accompanying sub-
sidence of the Uinta Basin wherein thousands of meters of
stream and lake deposits accumulated.

Phase V

Volcanic centers of Phase V affected much of Utah.
Oligocene intrusives and extrusives are present in the
western portion of the study area.

FIGURE 4.—Lineation map.
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Phase VI

The Miocene to Recent phase is characterized by block
faulting along the western margin of the study area, re-
gional uplift, nonmarine sediments, and glaciation of the
flanks of the Uinta and Wasatch Mountains. A profound
influence on the topography of the area has been exerted
by the regional uplift of the Colorado Plateau.

CLASSIFICATION

GENERAL STATEMENT

Historically, linear features recognized on the earth’s
surface have intrigued geologists. Hodgeson (1976) pro-
vides, for those interested, a complete and informative re-
view of the early study of lineations. With the advent of
satellite imagery, a new scale of observation is accessible
for the study of linear features. Many geologists have been
quick to utilize this new tool. As with any new field, no-
menclature difficulties have arisen with many words
seeming to have as many definitions as users. Sensing a
need for clarity, I have defined the terms of this report,
using the excellent terminology proposed by El-Etr
(1976).

Linear: A descriptive and nongenetic term for any line-
ation within or on a rock, exposed or covered by surficial
material, less than 10 km long.

Lineament: A descriptive and nongenetic term for any
lineation within or on a rock, exposed or covered by sur-
ficial material, 10~100 km long.

Megalineament: A descriptive and nongenetic term for
any lineation more than 100 km long.

When I refer to linear features generically, the term
lineation will be used.

In the study area, a feature not covered by El-Etr’s defi-
nitions was recognized. A substantial number of circular
to ellipsoidal features of various sizes were seen. Annular
structure is the term chosen for those features. They are
not differentiated according to size. Annular structure is
defined as a descriptive, nongenetic term for any circular
or ellipsoidal feature within or on a rock exposed or cov-
ered by surficial material.

LINEATIONS
LINEATION DISTRIBUTION

Introduction

Examination of the lineation map (fig. 4) reveals the fol-
lowing: (1) Nine megalineaments (fig. 5), which will be
described and discussed singly later, are recognized; (2)
lineation patterns vary with location in the study area (fig.
4); (3) occurrences of lineations are conspicuously more

R.B. YOUNG

prevalent in the southern half of the study area (figs. 4, 5).
The study area is divided into roughly equal area quad-
rants (figs. 4, 5) by the Scofield (north-south trend) and the
Strawberry (east-west trend) Megalineaments (fig. 5). In
each of the four quadrants derived by the intersection of
these two megalineaments is a distinctive characteristic
which delineates each quadrant. Each quadrant displays a
different lineation pattern, which results from variations
in lineation trend and density (fig. 4).

QUADRANT DESCRIPTION

Northwest Quadrant

Lineations are largely confined to the Wasatch Moun-
tains (fig. 4), and the majority display a pronounced north-
westward bias. Large areas of the quadrant are void of
lineations, probably because of cultural features and land
cultivation masking the lineation trends. The intersection
of the Uinta, Wasatch East, and Uncompahgre-Raft River

- Megalineaments is associated with an economically im-

portant mineralized area in this quadrant.

Northeast Quadrant

Distribution of lineations is more uniform in the north-
east quadrant (fig. 4), and their density is comparatively
greater. No dominant trend is readily observed. The Uinta
Megalineament is present (fig. 5) but does not intersect
any other megalineament. A major zone of intersection
does occur in the quadrant involving the Towanta,
Scofield, and Uncompahgre-Raft River Megalineaments

(fig. 5).

Southeast Quadrant

Density of lineations is much greater in this quadrant
than in the previous two (fig. 4), with north-south, east-
west, and northeast-southwest trends being about equally
represented. Even though the largest linear feature in the
study area, the northwest-trending Uncompahgre-Raft
River Megalineament (fig. 5), passes through the quad-
rant, there is a noticeable scarcity of other northwest
lineations.

Southwest Quadrant

Except for the extreme northwest corner of the quad-
rant (Utah Valley), lineation population is more dense and
more regularly distributed than in the previous three (fig.
4) with northeast trends strongly dominant. Three zones
of major intersection of megalineaments are observable
(fig. 5) involving the curved west limb of the Strawberry,
the Book Cliffs, the Bad Lands Cliffs, the Wasatch East,
and the Wasatch West Megalineaments.
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UINTA MEGALINEAMENT
Description
The Uinta Megalineament is a major east-west-trending

feature (fig. 2, 3, 5) which is traced for 124 km across the
study area with an average trend of 77°. The megalinea-
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ment’s termini are uncertain, but Erickson (1976) in-
dicates that the Uinta Megalineament may be traced from
eastern Nevada through Utah into western Colorado. In
the study area, the megalineament is initially expressed as
the crest of the west dome of the Uinta Mountains and is
traced westward from the vicinity of Kings Peak to a brief
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interruption at Kamas Plain (fig. 5). Resumption of the
megalineament, west of Kamas, is defined by albedo pat-
terns and alignments of small ridges and valleys which
blend into the Traverse Mountains at the western border
of the study area.

Structure

East-west faults are common in the western Uinta
Mountains (fig. 7) and are essentially parallel to the Uinta
Megalineament. Near the western margin of the Uinta
Mountains, fault density decreases noticeably. An annular
structure (fig. 6) overprints the west-plunging nose of the
west dome of the Uinta Mountains and appears to control
this decrease in fault density. Fault density increases in
the Tertiary volcanics west of Kamas Plain and continues,
but with increasing divergence westward, only somewhat
parallel to the megalineament. An abrupt change occurs
west of the boundary fault of the Little Cottonwood Stock
where fault trends rotate approximately 90° to a north-
south direction (fig. 7). This change appears where the
megalineament enters the Basin and Range Province, in
which north-south blockfaulting is a definitive
characteristic.

Geophysics

An east-west-trending alignment of aeromagnetic highs
(fig. 8) which degenerate to an east-plunging aero-
magnetic ridge substantially follows the Uinta Megalinea-
ment (Zietz 1976, Mabey and others 1964). A gravity
ridge (fig. 9), plunging slightly south of west (Cook and
others 1975), also aligns well with the trend of the mega-
lineament. A scanty seismic pattern correlates well with
the megalineament (fig. 10); however, the evidence is in-
conclusive (Arabasz and others 1979). Basement maps
prepared by Condie (1969; fig. 7) indicate the Uinta
Megalineament lies within the Churchill Basement Prov-
ince (1.6 to 1.8 b.y.b.p.) of which the Uinta Subprovince is
a subdivision and which is elongate east-west. Near the
western margin of the Uinta Subprovince this east-west
trend bifurcates yielding northwest- and southwest-trend-
ing forks. The Uinta Megalineament follows approx-
imately the centerline of the east-west trend of the Uinta
Subprovince and appears to bisect the two forks at the
subprovince’s western margin.

Economics

Along a trend defined by the general orientation of the
crest of the Uinta Mountains is a much-studied, strongly
mineralized belt, known by various names; such as the
Uinta-Gold Hill Arch of Roberts (1960), the Oquirrh-
Uinta Belt of Hilpert and Roberts (1969), and the Uinta-
Gold Hill trend of Erickson (1976). A mineralized zone

containing ten mining districts of variable importance is
located within this belt along the Uinta Megalineament
(figs. 5, 11) and is associated with this megalineament’s in-
tersection with the Wasatch East and Uncompahgre-Raft
River Megalineaments.

TOWANTA MEGALINEAMENT

Description

The Towanta Megalineament (fig. 5) is traced for 89
km across the study area with an average trend of 70°. Ac-
cording to Ritzma (1976), the complete megalineament
extends from an area 32 km north of Vernal, Utah, south-
west to the vicinity of the House Range in western Utah.
Ritzma maintains that the megalineament bends to the
south where it crosses the Wasatch line. Close exam-
ination of the ERTS imagery (fig. 3) clearly demonstrates
this “bending” to be only apparent. A packet of lin-
eaments striking generally 40° cross and, for 14 km inter-
rupt the trend of the Towanta Megalineament. Across this
packet of lineaments the Towanta Megalineament is off-
set to the south, but continues to follow essentially the
initial trend to Utah Valley where the megalineament dis-
appears in the cultivated valley floor. For a detailed de-
scription of the entire trace of the Towanta Megalinea-
ment, see Ritzma (1976).

Structure

According to the latest available geologic map of the
study area (Hintze unpublished), faulting and folding (fig.
7) are not major controls of the megalineament; however,
alignment of streams and ridges along the trace is obvious.

Geophysics

The Towanta Megalineament closely follows an aero-
magnetic trend (fig. 8) noted by Zietz and others (1969,
1976) and was postulated by them to be a regional belt of
en echelon shear zones. The Towanta Megalineament is
also aligned with an elongated negative gravity anomaly
(Cook and others 1975; fig. 9) which trends westward to
the eastern margin of Utah Valley, where it apparently
ends abutting a gravity high. An accumulation of seismic
events illustrated by Arabasz and others (1979) marks the
eastward terminus of the Towanta Megalineament as it is .
displayed in the study area (fig. 10). The balance of the
megalineament in the study area parallels a distinct line of
seismic events located 10 km to the north. Basement (fig.
7) appears to exert a major control on the portion of the
Towanta Megalineament in the study area. The southern
margin of the Uinta Subprovince (fig. 7) matches remark-
ably well the trace of the Towanta Megalineament (Con-
die 1969).
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Economics with areas of this megalineament’s intersection with three
Four relatively unimportant mining districts in the other megalineaments (Wasatch East, Wasatch West, and

study area (Bullock 1962) are associated with the Towanta  Badlands Cliffs) is notable (fig. 5).

Megalineament (figs. 5, 11). The mining districts’ location Ritzma (1976) indicates a belief that the Towanta

along or nearby the megalineament and their association ~ Megalineament controls the northern extent of the Alta-
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FIGURE 6.—Annular structure map.
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mont-Bluebell oil field. An oil seep at Daniels Canyonand  their Energy Resources Map of Utah (map 44). It is likely

a zone of petroleum-saturated rock at Tabiona (fig. 11) that this megalineament is also a controlling factor in de-

are also associated with this megalineament. fining the northwest extent of the geothermal zone (figs.
A potential geothermal area in the Uinta Basin is  5,11).

plotted by the Utah Geological and Mineral Survey on
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FIGURE 7.—Tectonic map of study area. Data from Baker 1964a, 1964b, 1972, 1973, 1976; Baker and Crittenden 1961; Baker and
others 1966; Bissell 1952; Bromfield and others 1970; Crittenden 1965a, 1965b, 1965¢; Crittenden and others 1966; Hintze 1980; and
Ritzma 1969.
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STRAWBERRY MEGALINEAMENT (fig. 5). The eastern part of the Strawberry Megalinea-

ment is 76 km long, with its eastern terminus located 3 km
south of Bridgeland, Utah, in the vicinity of Antelope

The east-west-trending Strawberry Megalineament ex-  Creek. It has an 89° trend and extends for 62 km from the
tends for 135 km across northeastern Utah and is divided  eastern boundary of the study area to Strawberry Valley,
into two parts separated by the Scofield Megalineament =~ where the megalineament is obscured for 12 km and sub-

Description
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FIGURE 8.—Ae¢romagnetic map (data from Zietz 1976).
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sequently offset to the south approximately 5 km. The
trace then resumes but with a curvilinear conformation
which, for convenience, has been drafted on the compos-
ite linear map (fig. 4) as two intercepting lineations. This
variable trend, which curves to the southwest, character-
izes this portion of the megalineament, which has a length
of 59 km, with the western terminus located in the

Wasatch Mountains 11 km south of Payson, Utah.

The megalineament is expressed as a linear albedo pat-
tern corresponding to the Duchesne fault zone and con-
verges westward with the essentially linear Strawberry
River Valley. The previously mentioned interruption of
this part of the megalineament occurs at the fault line
scarp of the Strawberry Reservoir fault (figs. 5, 7). The
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FIGURE 9.—Bouguer gravity map of study area (Data from Cook and others 1975),
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offset western portion of the megalineament is expressed  Structure

as the arcuate valley of Diamond Fork Creek which con- The eastern section of the Strawberry Megalineament
verges with a southwest-trending ridge on Loafer Moun-  corresponds exactly with the Duchesne fault zone (figs. 5,
tain marking the gradual western termination of the 7). No other folding or faulting-is associated with this
megalineament in the study area. megalineament.

i “J‘N\‘“‘
i
i
P

. ;M\Mse‘

i I‘\‘(‘%

f i
il

’

40 50
Q 0 20 30 -
kilometers

FIGURE 10.—Schematic epicenter plot of the study area (after Arabasz and others 1979).
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Geophysics

The eastern part of the 89° trending Strawberry Mega-
lineament is associated with, but subparallel to, an aero-
magnetic trough (Zietz 1976; fig. 8) trending 77° with the
western curvilinear portion of the megalineament corre-

lating with an elongate aeromagnetic minimum possess-
ing a 57° trend. A gravity trend for the eastern portion of
the Strawberry Megalineament mirrors the 77° aero-
magnetic trend (Cook and others 1975; fig. 9); however,
the western curvilinear portion is not associated with a
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FIGURE 11.—Economic geology map of the study area. Data from Utah Geologic and Mineral Survey Map 44, Energy Resources

Map, Utah 1977.
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linear gravity trend. The curvilinear portion is, however,
associated, at their mutual intersection, with an abrupt
constriction of a north-south gravity ridge. There is no
evidence for seismic control of the eastern portion of the
Strawberry Megalineament. Indeed, no record of seismic
activity in the area is plotted at all (fig. 10; Arabasz and
others 1979). Although it is too sparse to define a pattern
of control, scattered seismic activity is plotted in the vi-
cinity of the curvilinear part of the megalineament. No
basement control is indicated for the eastern section of the
Strawberry Megalineament. However, the zone of great-
est flexure of the curvilinear western portion of the mega-
lineament correlates well with the Big Cottonwood Sub-
province boundary (fig. 6), probably reflecting some
basement influence (Condie 1969).

Economics

The curvilinear western portion of the megalineament
is associated with and is a credible controlling factor in
the localization of the Mt. Nebo mining district (fig. 11).

The southwest margin of the Altamont-Bluebell oil
field (fig. 11) lies parallel to and 4 km north of this mega-
lineament. It appears likely that the Strawberry Mega-
lineament is at least a controlling factor in the positioning
of this field. The southern extent of the previously men-
tioned potential geothermal field in the Uinta Basin (fig.
11) also appears to be at least partially controlled by this
megalineament.

BADLANDS CLIFFS AND BOOK CLIFFS
MEGALINEAMENTS

A brief explanation concerning the treatment of the
Badlands Cliffs and Book Cliffs Megalineaments is in or-
der. Within the study area, the two are parallel with ap-
proximately 19 km separation and could easily be consid-
ered a single broad linear zone. However, eastward,
outside the study area, a divergence in trend and dis-
similar length dictate the necessity of separate discussion.

Badlands Cliffs Megalineament

Description. The Badlands Cliffs Megalineament (fig.
5), which extends beyond both the east and west borders
of the study area, is traced for 129 km across the study
area displaying a 280° trend. Eastward, the megalinea-
ment is traced to the western margin of the Roan Plateau
at Green River Canyon. Across the Roan Plateau, the
trace is diminished and is marked solely by an alignment
of drainage direction changes. After crossing the Roan
Plateau, the megalineament, or a similar linear feature,
resumes and is traced into central Colorado near Mount
Lincoln. Westward of the study area, the megalineament
is marked by an alignment of mountain ranges ending at
the Dugway Range in western Utah.
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The Badlands Cliffs Megalineament is initially ex-
pressed in the study area by the lip of the Badlands Cliffs.
The trace is interrupted for 18 km by a large annular
structure (fig. 6) imprinted in the Eocene surface rocks
along the Badlands Cliffs. The megalineament resumes
following Soldier Creek Canyon to Thistle Junction
where the trace is defined by alignment of mountain
ranges and albedo patterns in the Basin and Range Prov-
ince. The trend appears to end at the Dugway Range but
may continue westward masked by the great Salt Lake
Desert.

Structure. No structural control of the megalineament
by folding is evident because folding trends are essentially
normal to the megalineament. Except in the western part
of the study area, faulting trends are also normal to this
megalineament (fig. 7). At Thistle Junction (fig. 1), fault
trends begin to parallel, with little divergence, the mega-
lineament, making fault control for it along this portion
likely.

Geophysics. The Badlands Cliffs Megalineament cor-
responds with an aeromagnetic ridge (Zietz 1976; fig. 8)
in the eastern part of the study area which gradually
changes to a chain of aeromagnetic minimums in the west.
A slight gravity trend (Cook and others 1975; fig. 9) is as-
sociated with the megalineament but is not as obviously
correlative as the above described aeromagnetic trend. In
the eastern part of the study area, the gravity trend is de-
fined by the southern margin of the Uinta Basin gravity
minimum. Westward, the gravity contours trend north-
south, yet, where intersected by the megalineament, tend
to deflect to an east-west trend. Beyond this zone of inter-
section, the gravity contours resume their original north-
south trend. Seismic activity along the Badlands Cliffs
Megalineament tends to cluster at intersections with
other megalineaments (Arabasz and others 1979). Other-
wise, recorded seismic activity along the megalineament
is too meager and scattered to postulate a controlling
mechanism.

Economics. This megalineament is associated with
vast deposits of petroleum-saturated rocks (figs. 5, 11) lo-
cated near the southeast corner of the study area. West-
ward from this point, the Badlands Cliffs Megalineament
defines the northerly extent of these outcrops of petro-
leum-saturated rocks at Argyle Canyon and Willow
Creek. Farther to the west, the deposits of petroleum-sat-
urated rocks near Thistle are associated with this mega-
lineament at its intersection with the Wasatch East
Megalineament.

Book Cliffs Megalineament

Description. The Book Cliffs Megalineament (fig. 5),
which extends for 129 km across the study area with a
trend of 280°, is parallel to and 19 km south of the Bad-
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lands Cliffs Megalineament. It extends beyond both the
east and west borders of the study area. East of the study
area, it is marked by an alignment of stream valleys across
the Roan Plateau and the Book Cliffs of Colorado, where
it veers to the south and ends near La Junta, Colorado, at
a sharp northeastward bend of the Arkansas River. West-
ward from the study area, an apparent merging occurs
with the Badlands Cliffs Megalineament with both mega-
lineaments ending at the Dugway Range in western Utah.

The megalineament is initially expressed in the study
area by the rim of the Book Cliffs (figs. 3, 5) west of Cas-
tlegate, Utah, where east-west topographie trends define
its trace. East-west-trending valleys and ridges define the
megalineament across the Wasatch Plateau and the
Wasatch Range, which is crossed near the south end of
Dry Mountain in Utah County.

Structure. 'With only two subparallel exceptions (fig.
7), folding and faulting trends are basically perpendicular
to the Book Cliffs Megalineament; therefore, no struc-
tural control is postulated.

Geophysics. The Book Cliffs Megalineament corre-
lates with an east-west aeromagnetic trend which is re-
lated to the aeromagnetic trend described in the Badlands
Cliffs segment (Zietz 1976; fig. 8). The megalineament
also correlates with a rather obscure gravity trend (Cook
and others 1975; fig. 9) initially associated with the north-
ern end of the San Rafael Swell gravity high, then goes
westward, with an east-west bulge in the Scofield Reser-
voir gravity minimum and with contour-line deflections
across the Wasatch Range. A well-defined linear seismic
pattern (Arabasz and others 1979; fig. 10) in the eastern
portion of the study area which diminishes westward ow-
ing to scattering of the seismic pattern is associated with
the Book Cliffs Megalineament.

Economics. The Mt. Nebo mining district (fig. 11) lies
on the Book Cliffs Megalineament near its intersection
with the Wasatch West and Strawberry Megalineaments
(fig. 5). Coal is mined near Sunnyside, Utah (fig. 11), along
this megalineament.

Also, near Sunnyside, Utah (fig. 11), the previously
mentioned deposits of petroleum-saturated rock are ex-
posed, trending essentially east-west and located between
the Badlands Cliffs and Book Cliffs Megalineaments (figs.
5, 11). The Book Cliffs Megalineament controls the south-
ern extent of these deposits in the study area.

UNCOMPAHGRE-RAFT RIVER
MEGALINEAMENT
Description

The Uncompahgre-Raft River Megalineament (fig. 5) is
the largest linear feature observed in the study area and

extends beyond the borders of the study area, both to the
northwest and to the southeast. Although the trace of the
megalineament is not strictly continuous for its entire
length, examination of tectonic maps (King 1969, 1977), a
satellite imagery conterminous mosaic of the United
States (NASA 1974), a landform map of the United States
(Raisz 1957), raised relief maps of the United States and
North America (Nystrom maps NR1 and NR2), and a sur-
vey of literature (Raisz 1945, Kelley 1955, Heylmun 1959,
Moody 1966, Stone 1974, and Warner 1980) indicate a
megalineament of great length. These data are good in-
dications for the extension of the Uncompahgre-Raft Riv-
er Megalineament from the Isthmus of Tehuantepec in
southern Mexico to Queen Charlotte Island off the British
Columbia coast. Interruptions and possible offsets of this
megalineament may be of great tectonic and economic
importance.

In the study area, the Uncompahgre-Raft River Mega-
lineament extends for 172 km with a 318° trend (fig. 5)
from near Sunnyside, Utah, in the southeast, to the Salt
Lake Salient in the northwest. In the study area, near Sun-
nyside, Utah, initial expression of the megalineament is by
alignment of ridges and valleys which to the northwest is
interrupted by a large annular structure (fig. 6) developed
at the intersection of this megalineament and the Bad-
lands Cliffs Megalineament. Resuming northwestward,
the megalineament is marked by the northwest-trending
northern margin of Strawberry Valley. Alignment of
ridges and valleys resume the outline of the megalinea-
ment and continue to the Salt Lake Salient.

Structure

Faulting (fig. 7), with one exception, exerts nio control
on the megalineament. Northwest of Strawberry Reser-
voir (fig. 1), faulting, exposed in a window through the
Charleston thrust plate, correlates with and somewhat
parallels the Uncompahgre-Raft River Megalineament.
The exposed window is located in the intersection zone
(fig. 5) of the Towanta, Scofield, and Uncompahgre-Raft
River Megalineaments. Indeed, this window, because of
possibly more pervasive fracturing of the rocks in the in-
tersection zone, may be a response of differential erosion.
Folding trends (fig. 7) are essentially normal to the
megalineament.

Geophysics

A distinct northwestward aeromagnetic trend (Zietz
and others 1976; fig. 8) consisting of a linear chain of mag-
netic highs, coincides with the Uncompahgre-Raft River
Megalineament. No discernible gravity trend (Cook and
others 1975; fig. 9), however, is associated with it. In the
southeast portion of the study area, there is excellent evi-
dence correlating seismic activity (Arabasz and others
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1979; fig. 10) and the Uncompahgre-Raft River Mega-
lineament; however, north of the Badlands Cliffs Mega-
lineament (fig. 5), within the Uinta Basin, seismic activity
virtually ceases. Northwest of Strawberry Reservoir (fig.
1), seismic activity resumes, but recorded epicenters are
very scattered and little linear trend is recognized, so seis-
mic control of this portion of the megalineament is not
postulated.

Economics

Major ore mineralization (fig. 11), mentioned earlier,
within the zone of intersection of the Uncompahgre-Raft
River, Wasatch East, and Uinta Megalineaments (fig. 5)
and coal mining near Sunnyside, Utah (fig. 11), comprise
the mining districts associated with this megalineament.

Petroleum associations with this megalineament in-
clude the petroleum-saturated rock deposits near the
southeast corner of the study area (fig. 11) which are re-
lated to the intersection of this megalineament with the
Badlands Cliffs and the Book Cliffs Megalineaments and
the previously mentioned oil seep at Daniels Canyon (fig.
11).

SCOFIELD MEGALINEAMENT

Description

The Scofield Megalineament (fig. 5) extends for 136 km
through the study area with a trend of 356°. The mega-
lineament, with a total length of 169 km, extends beyond
both the southern and northern borders of the study area,
with its southern terminus located in Huntington Creek
Canyon 13 km northwest of Huntington, Utah. Geomor-

_ phic expression of the megalineament is defined by north-
south-trending valleys and ridges. Near Kamas, Utah, ex-
pression of the megalineament begins to wane, but it is
distinguishable to its northern end 10 km east of Coalville,
Utah.

Structure

Fault control of the Scofield Megalineament south of its
intersection with the Strawberry Megalineament is ob-
vious (fig. 7). However, with one exception, north of the
Strawberry Megalineament intersection, faulting is not a
controlling factor. Here, faulting trends are parallel to
subparallel to the megalineament, but they are located far
to the west. In the zone where the Scofield, Towanta, and
Uncompahgre-Raft River Megalineaments intersect (fig.
-5), faulting, exposed in a window through the Charleston
thrust plate, is associated for a short distance with the

trace of the Scofield Megalineament. Inasmuch as folding

trends are oblique to the megalineament, folding is not
considered a controlling structural factor.

Geophysics

A weakly developed aeromagnetic trend (Zietz and
others 1976; fig. 8), extending from an aeromagnetic high
on the southern border of the study area to a site 25 km
north of Strawberry Reservoir, marks the trace of the
Scofield Megalineament. In this vicinity, a southwest
aeromagnetic trend associated with the South Flank fault
of the Uinta Mountains and the previously described aero-
magnetic trend associated with the Towanta Megalinea-
ment interact with the north-south Scofield aeromagnetic
trend resulting in its obfuscation and termination. South
of Strawberry Reservoir, a weak gravity trend (Cook and
others 1975; fig. 9) is defined by an elongate gravity mini-
mum positioned around Scofield Reservoir. This gravity
trend continues northward marked by east-west-trending
gravity contours bending suddenly northward to the
Scofield Megalineament. North of the Scofield-Straw-
berry Megalineament intersection, the trend abruptly
ends. A number of seismic events (Arabasz and others
1979; fig. 10) are on or near the Scofield Megalineament
but are too scattered to portend seismic control.

Economics

The Elkhorn and Woodland mining districts (fig. 11)
are associated with this megalineament (fig. 5) near its in-
tersection with the Uinta Megalineament.

The Clear Creek gas field (fig. 11) is flawlessly aligned
with the Scofield Megalineament. The previously men-
tioned oil seep at Daniels Canyon (fig. 11) is also located
on this megalineament near its intersection with the To-
wanta and Uncompahgre-Raft River Megalineaments.

WASATCH EAST MEGALINEAMENT

Description

The Wasatch East Megalineament (fig. 5) is traced for
149 km across the study area with a trend of 347° and,
like the others previously described, is followed beyond
the borders of the study area. To the north, the trace is
followed to the Snake River Plain near Pocatello, Idaho,
and south of the study area, extends to the southern end of
East Mountain, northeast of Castledale, Utah, measuring a
total length of 420 km. Initial expression of the mega-
lineament in the study area, from north to south, is by the
crest of the central Wasatch Mountains. South of Provo
Canyon, the central Wasatch Range widens abruptly,
where the Wasatch East Megalineament intersects both
the Towanta and Strawberry Megalineaments. A large el-
lipsoidal annular structure (fig. 6), defining the abrupt
widening of the central Wasatch Range, results and is
characterized by a number of smaller annular structures
contained within itself. The axis of this large annular
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structure maintains the trend of the Wasatch East Mega-
lineament. Within the confines of this annular structure,
expression of the Wasatch East Megalineament is trans-
formed from the crest of the central Wasatch Mountains
to the broader yet continuous linear trending Wasatch
Plateau (fig. 2). A complex series of megalineament inter-
actions is displayed in and near the area of the above men-
tioned annular structure which is illustrated by the fol-
lowing: (1) within a relatively small area, the Towanta
Megalineament intersects the Wasatch East Megalinea-
ment and is offset left laterally to the south; (2) the curvi-
linear portion of the Strawberry Megalineament inter-
sects the Wasatch East, Badlands Cliffs, Wasatch West,
and Book Cliffs Megalineaments with no discernible off-
set; (3) the Wasatch East Megalineament intersects the
Towanta, curvilinear portion of the Strawberry, the Bad-
lands Cliffs, and the Book Cliffs Megalineaments with a
continuance of trend.

Structure

North of Provo Canyon, the megalineament is con-
stantly defined by or closely paralleled by faulting (fig. 7);
however, south of Provo Canyon, within the annular
structure previously mentioned, this faulting diminishes
gradually. Beyond the zone of intersection with the To-
wanta Megalineament, near Hobble Creek Canyon, fault-
ing trends are seldom parallel and are usually oblique to
the trend of the Wasatch East Megalineament. After the
Wasatch East Megalineament’s transition to the Wasatch
Plateau (fig. 2), parallel faulting again is intimately in-
volved with the megalineament, and folding is oblique.

Geophysics

A well-defined aeromagnetic trend (Zietz and others
1976; fig. 8), which lies approximately 7 km to the east
and parallels the Wasatch East Megalineament, consists
of a south-trending aeromagnetic trough descending from
the magnetic high associated with the Little Cottonwood
Stock (fig. 6). A less well defined gravity trend (Cook and
others, 1975; fig. 9) is observed which consists of aligned
gravity mirimums in the north deteriorating to a linear
gravity slope paralleling the megalineament in the south.
Recorded seismic events (Arabasz and others 1979; fig. 10)
are scattered along the trace of the Wasatch East Mega-
lineament, but while seismic episode frequency increases,
and the pattern tightens south of the Towanta Megalinea-
ment intersection (fig. 5), the evidence is inconclusive for
seismic control.

Economics

The Provo and Spanish Fork mining districts (fig. 11)
are associated with this megalineament. The Provo dis-
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trict is related to the intersection of this megalineament
and the northerly offset portion of the Towanta Mega-
lineament (fig. 5), while the Spanish Fork district is associ-
ated with the Wasatch East Megalineament and the
southerly offset portion of the Towanta Megalineament.

Petroleum association along this megalineament is in-
volved only with the petroleum-saturated rocks of the
Thistle area (fig. 11).

A hot spring (fig. 11) is located very near the trace of
the megalineament just north of its intersection with the
Badlands Cliffs Megalineament.

WASATCH WEST MEGALINEAMENT

Description

The Wasatch West Megalineament (fig. 5) extends for
55 km across the study area with a trend of 3° and extends
southward beyond the borders of the study area, termi-
nating at the southern end of the San Pitch Mountains east
of Gunnison, Utah. The megalineament has a total length
of 94 km, This is 6 km less than the stated minimum mega-
lineament length, but, because I consider it to be ge-
netically related to the Wasatch East Megalineament and
because it is just short of the defined criterion, I have cho-
sen to include the Wasatch West Megalineament with the
megalineaments. It is expressed as the north-south-trend-
ing crest of the southern Wasatch Mountains and the San
Pitch Mountains.

Structure

Faulting (fig. 7) plays a determinant role in the north-
ern portion of the megalineament; however, south of the
intersection with the curvilinear portion of the Straw-
berry Megalineament (fig. 5), northeast of Mona, Utah,
faulting trends are not associated with the megalinea-
ment. Folding (fig. 7) appears to play little or no part in
the trace of the megalineament.

Geophysics

Aeromagnetic trends (Zietz and others 1976; fig. 8) do
not appear to be associated. with this megalineament be-
cause they trend southwest to northeast, oblique to the
nearly north-south trace of the megalineament. A small
north-south-trending gravity high (Cook and others 1975;
fig. 9) parallels the megalineament 5 km to the west.
Otherwise, the megalineament parallels a north-south-
trending gravity slope. Although seismic activity (Arabasz
and others 1979; fig. 10) is intense near the northern ter-
minus of the Wasatch West Megalineament at its inter-
section with the Badlands Cliffs and the Towanta Mega-
lineaments, evidence for seismic control along the length
of the megalineament is lacking.
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Economics

The Juab and Santaquin mining districts (fig. 11) are lo-
cated along this megalineament. The Mount Nebo mining
district is within the intersection zone of this megalinea-
ment and the Strawberry and Book Cliffs Megalineaments
(figs. 5, 11).

This megalineament may be a control for the western
margin of a potential geothermal area mapped by the
Utah Geological and Mineral Survey (fig. 11) plotted on
their “Energy Resources of Utah,” map 44.

ANALYSIS

GENERAL STATEMENT

Measurement and subsequent plotting of 651 linear
trends indicate preferred directions of linear occurrence.
Eight linear sets (fig. 12) exhibiting varying degrees of de-
velopment are recognized. Each set is related to a mu-
tually orthogonal set, forming a pairset (Gay 1973) and a
tetraorthogonal pattern results (fig. 12).

Linear Pairset Trend Angular Separation
A-A’ 260°-350° 90°
B-B’ 373°-0° 87°
c-¢ 289°-15° 87°
D-D 337°-73° 95°

Five of these eight linear trends correspond favorably
with linear trends recognized by Gay (1972) in the Para-
dox Basin, Utah, 350 km southeast of this study area. The
two principle orthogonal pairsets in this study area, c-C
and D-D’, are similar to the Uncompahgre (298°)-
Wasatch (22°) and the Front Range (338°)-Uinta (69°)
pairsets of Gay (1972).

Young Gay Angular Separation
C 289°  Uncompahgre 298° 9°
C’ 15°  Wasatch 22° 7°
D 337°  FrontRange 338° 1°
D’ 73°  Uinta 69° 4°
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This striking correlation of widely separated indepen-
dent studies documents favorable evidence for regional
control of major linear trends in the Colorado Plateau and
the Uinta-Wasatch transition zone.

COMPUTER ANALYSIS

Analysis of linear intersection frequency and linear
density was initiated by preparing a grid overlay with 20
mm X 20 mm cells (7 km map scale). The unit cell size
was chosen merely for convenience. The resulting grid
overlay was placed over the linear map (fig. 4), and the
number of linear intersections per unit cell was recorded.
Measurement of total linear length per unit cell (linear
density) was also recorded. The data derived for inter-
section frequency and linear density were inserted sepa-
rately into the SYMAP program and processed through
the IBM 360 computer. Two machine-generated contour
maps (fig. 13, 14) illustrating, respectively, linear inter-
section frequency and linear density completed the
procedure.

Linear Intersection Frequency

Examination of the linear intersection frequency con-
tour map (fig. 13) reveals a number of anomalies, the ma-
jority of which occur in the southern half of the study
area. All the larger anomalies occur there. Correlation of
medium- to high-amplitude anomalies with zones of
megalineament intersection (figs. 5, 13) is obvious. Miner-
alization (fig. 11) correlates strikingly with areas of low-to
medium-amplitude anomalies (fig. 13) in the north-
western quadrant of the study area and in a belt near the
study area’s western margin. The reader’s attention is es-
pecially directed to the Big Cottonwood, Spanish Fork,
and Mt. Nebo mining districts (figs. 5, 11).

With one major exception, petroleum and natural gas
occurrence and petroleum-saturated rock outcrops (fig.
11) are conspicuously associated with medium- to high-
amplitude linear intersection frequency anomalies (fig.

FRONT RANGE 17)
337°

PARADOX (7}
273 UNCOMPAHGRE ()
289°

WASATCH(?)
15°

UNTA(?)
73°

» g

oQf— — — = —— = ) =

FIGURE 12.—Orientation histogram of preferred linear directions in the study area compared with data from Gay 1972.
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13) located in the southern half of the study area. Particu-
lar attention is directed to the Thistle area, to the Clear

define, in large measure, the vast expanse of petroleum-
saturated rock outcrops in the area. The major exception

Creek gas field area, and to a belt of northwest-trending
anomalies beginning near Sunnyside, Utah (fig. 11), which

D

noted above, wherein no correlation is recognized, is the
Altamont-Bluebell oil field. Examination of ERTS image
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FIGURE 13.—Linear intersection frequency per unit cell contour map.



ANALYSIS OF NORTHEASTERN UTAH USING ERTS IMAGERY

5544-16413 (fig. 3) reveals a substantial number of small
linears, less than 4 km in length, located in the area of the
Altamont-Bluebell oil field. Had the discrimination level
of 4 km linear length not filtered out the smaller linears, a
better correlation may have resulted. It poses an inter-
esting project to be developed in another study.

Two hot springs are associated with linear intersection
. frequency anomalies (Young 1976). A hot spring located
near the center of T. 3 S, R. 4 E, is located within a low-
amplitude anomaly 8 km north of Deer Creek Reservoir
(fig. 11). Another hot spring located in the northwest
quarter of T.9 S, R. 4 E, is directly centered in one of the
two highest-amplitude anomalies mapped. Three other
hot springs are not associated with anomalies. Two are lo-
cated in Utah Valley near Utah Lake (fig. 11), where de-
tection of linears is difficult if not impossible because cul-
tural features mask or otherwise disguise the linear traces.

Linear Density

Linear density (the number of kilometers of linear per
unit cell) correlates favorably with the linear intersection
frequency contour map. However, finer detail and per-

“haps more information is available by contouring linear
density. Anomalous highs equate with linear intersection
frequency highs, varying only in shape. Information pre-
sented above relating linear intersection frequency data
to areas of economic interest apply equally well to linear
density data with the following added information. The
14- and 21-km density contours in the east central portion
of the study area outline the Altamont-Bluebell oil field
(fig. 11, 14). Although the area defined is somewhat larger
than the area of the Altamont-Bluebell field outlined in
map 44 of the Utah Geological and Mineral Survey’s

" “Energy Resources Map of Utah,” the shape is repro-

duced with remarkable persistence. In view of these data,
linear density analysis, at least in this area, may be less af-
fected by the filtering effect of linear length selection:

Two anomalously low areas are, however, present within

the outline of the Altamont-Bluebell oil field (fig. 14).

These anomalous low areas may also be due to the filter-

ing effect. Twenty other anomalously low areas occur in
the study area. No other explanation is proposed at this
time.

ANNULAR STRUCTURES
GENERAL STATEMENT

One hundred sixteen annular structures (fig. 6) are iden-
tified in the study area and range in size from a long axis
diameter of 100 km to less than 1 km, with shapes varying
from nearly circular to roughly ellipsoidal (Glukhovskiy
1977). Other curved features are noted (curvilinears, Pe-

terson 1976, Smith 1976), but unless 75 percent closure of .
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the ring is displayed, they are not included in this study.
Annular structures are expressed by ridges and valleys
with arcuate trends (compare fig. 3 and fig. 6), arcuate
drainage patterns, and arcuate tonal anomalies, which are
often the only expression of smaller annular structures.
The long axes of ellipsoidal annular structures generally
follow the trend of an associated megalineament (com-
pare fig. 3 and fig. 5) and, with one exception, are associ-
ated with megalineament intersections. The exception, a
34-km-diameter annular structure located at the north-
eastern terminus of the Towanta Megalineament (fig. 5),
is centered around and evidently associated with the in-
tersection of two large (approximately 40-km length) lin-
eaments (fig. 4). Two large (100-km and 75-km diameter)
concentric annular structures dominate the central part of
the study area and form the transition zone between the
Uinta Mountains, Wasatch Mountains, and Colorado
Plateau. Thirteen megalineament intersections occur
within or near the borders of these large annular struc-
tures. Centered within them and very likely playing a ma-
jor role in their genesis is the zone of intersection of the
Uncompahgre-Raft River, Scofield, and Towanta Mega-
lineaments. Within the interiors and along the borders of

. these two large annular structures are a number of smaller

ones; the majority of which are closely associated with
megalineaments and megalineament intersections. The
consistent association of annular structures and mega-
lineament intersection suggests intimate relationship.

SUMMARY

Lineations are present throughout the study area and
are obscured only in those areas where lakes, cultivation,
and cultural features mask their presence (fig. 4). They are
characterized by remarkably straight trends, and the ma-
jority are the undoubted result of complex and, at present,
enigmatic interactions within the lithosphere. While lin-
eation patterns are regionally ordered and systematic (fig.
4, 12), within this regional order more locally restricted
stress fields may be recognized. The display of four sepa-
rate lineation patterns separated by megalineaments,
which have supporting aeromagnetic and gravity data,
suggests four discrete basement blocks whose common
margins are displayed at the surface as large-scale recti-
linear features (megalineaments) (Affleck 1963).

Correlation of mineralized districts, areas of petroleum
and natural gas accumulation, and hot spring occurrence
with lineation intersection frequency (fig. 13) and lin-
eation density anomalies (fig. 14) is notable and suggests
careful examination of other anomalous areas not now
known to have economic value. Lineation-density and in-
tersection-frequency anomalies are probably associated
with zones of intense fracturing in the subsurface, gener--
ating zones of weakness facilitating magmatic intrusion
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and hydrothermal fluid dispersion in mineralized districts ~megalineament intersections appear to be a significant
or creating fracture permeability for avenues of migration  factor in ore emplacement (fig. 11). Outcrops of petro-

and/or zones of accumulation of hydrocarbons. leum-saturated rock and areas of natural gas production
Mining districts lie on or near megalineaments, and  are also associated with megalineaments and their inter-
PN

. L — 7\ N
Linear Density Per Unit Cell

(Curvilinears not included)

FIGURE 14.—Linear density per unit cell contour map.
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sections (fig. 11). Generation of fracture permeability and
positioning of the Altamont-Bluebell oil field are inter-
preted as a response to the interaction of the Towanta
(Ritzma 1976) and the Strawberry Megalineaments (fig.
5). Megalineament intersections are also intimately asso-
ciated with and surely a significant factor in the genesis of
large annular structures (figs. 5, 6).

In the study area five megalineaments are involved in
offset relationships. The remarkably straight course of
megalineaments over tens of kilometers demonstrates
their vertical orientation, and their persistence across geo-
logic structures, geomorphic provinces, and drainage ba-
sins suggests some level of continuous activity. Con-
sequently, a basement-generated wrench fault system has
been postulated (Hodgeson 1976, Smith 1978, Abdel-Ga-
wad and others 1976, Stone 1969, Morris and others 1964,
Moody and Hill 1956, Moody 1966, Vening 1947. Not all
megalineaments offset other megalineaments; however,
Stone (1969) describes why in areas of thick sediment ac-

cumulation, because of subsurface zones of uncoupling,

basement-derived wrench faulting is not necessarily ex-
posed at the surface.

In the study area, annular structures are widely dis-
tributed with larger ones consistently associated with
megalineament or large lineament intersection (figs. 3, 5,
6). Interpretation of these features is, at the present time,
necessarily speculative.

Smith (1976) has proposed five separate possibilities of
origin: (1) impact structures in basement which influence
younger structures through tectonic heredity (Gallant
1963, Cohenour and Sharp 1968); (2) doming resulting
from igneous intrusion and consequent collapse, as de-
scribed by Longwell (1948) and Makin (1960); (3) drag
folds along major strike-slip faults (Albers 1967); (4) tec-
tonic heredity from circular features in basement which
Fyfe (1974) proposes are the result of Archean convection
cells—50 to 100 km in diameter; (5) a response to radial
spreading from intrusion centers or the result of a but-
tressing effect of plutons or other rigid blocks.

To these possibilities I would add (1) a surface response

through tectonic heredity of buried calderas; (2) pierce-
ment structures—especially the smaller ones (Moulton
1977); (3) rotational structures due to coupling stress at
megalineament or lineament intersection as described by
Emmons (1969); (4) surface response to cone fractures due
to intrusion as reported by Bahat (1979); and (5) pene-
trative shattering of surface and subsurface rocks as the
result of two intersection wrench faults as described by
Lensen (1959) and Garfunkel (1966), resulting in more
pervasive weathering and erosion in these areas.

Although separate annular structures may be the result
of any or a combination of these possibilities, because
large annular structures are consistently associated with

megalineament intersection, and because of an apparent
close relationship with drainage basins (fig. 2), I believe
the latter reason to be the most important in this area.

Although more questions have arisen than have been
addressed, let alone answered, in this study, it is obvious
that remote sensing from space is an excellent reconnais-
sance tool, which, when utilized thoroughly, can be of
great benefit to the industry in localizing prospective
areas for more intensive investigation.
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