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Geology of the Steele Butte Quadrangle,
Gartfield County, Utah*

WILLIAM W. WHITLOCK
Virginia Division of Mineral Resources, Charlottesville, Virginia 22903

Thesis chairman: J. KEITH RIGBY

ABSTRACT

The Steele Butte Quadrangle is located in the Henry Mountains coalfield of southeastern Utah.

Upper Jurassic and Lower Cretaceous rocks exposed in the quadrangle indicate deposition in
interdeltaic-coastal, shallow-marine, tidal-flat, fluvial, lacustrine, and eolian environments. Upper
Cretaceous Dakota Sandstone and Mancos Shale represent marine, deltaic, and interdeltaic sediments
deposited in response to continually shifting deltaic lobes. '

Laramide deformation during Late Cretaceous to early Tertiary time produced the Henry Mountains
syncline. Eocene laccolithic intrusions created associated faults and folds.

The Muley Canyon Sandstone contains potential coal resources suitable for strip mining. Coal occurs in a
carbonaceous zone of 1-4 seams that average 2-3 m total thickness with a maximum of 6 m. Overburden is
generally less than 45 m (150 ft) thick across much of the quadrangle. Economic coal deposits are limited to
the northern two-thirds of the quadrangle. Coal in the southern third was eroded during deposition of

surrounding fluvial sandstones.

INTRODUCTION

Muley Canyon Sandstone in the Steele Butte Quad-
rangle contains coal deposits suitable for strip mining,
prompting interest in the area. Although previous studies
have outlined regional geology of the Henry Mountains,
this more detailed study documents the coal resources,
stratigraphy, and structure of the quadrangle.

A depositional model is developed for the widespread
Blue Gate Shale, Muley Canyon Sandstone, and Masuk
Shale members of the Mancos Shale. This model presents
a predictable pattern of coal distribution in the quad-
rangle and provides criteria to combine related rocks into
stratigraphic units.

LOCATION AND ACCESSIBILITY

The Steele Butte Quadrangle is located in Garfield
County, about 35 km southwest of Hanksville, within the
Henry Mountains coalfield of southeastern Utah (fig. 1).
Improved dirt roads provide access from Utah 24 into the
study area. Access is good except when sporadic late sum-
mer storms hamper travel.

METHODS

Fieldwork was conducted from June through Septem-
ber, 1982. Stratigraphic sections were measured of all ex-
posed sedimentary units. Field mapping was completed
on 1:31,680 aerial photographs and transferred to a
1:24,000 topographic quadrangle. A geologic map and
cross section, at 1:24,000 scale, are published in the Utah

" Geological and Mineral Survey Map Series (Whitlock

1984) and are not duplicated in this report.

Fourteen coal sections were measured and channel
samples of coal from the Muley Canyon Sandstone were
collected at 2-km (1.5-mi) intervals along the outcrop
trace. Additional coal sections were measured at 0.3-km
(0.25-mi) intervals. Coal samples were submitted to the
Utah Geological and Mineral Survey for analysis. Results
of analysis will be published in a future survey publication
of the Henry Mountains coalfield.

Electrical and lithologic logs were used with field data,
to construct the coal isopach map, structure contour map,
and structural cross section.

° A thesis submitted to the Department of Geology, Brigham Young University, in partial fulfillment of the requirements for the degree of Master of

Science, April 1983.
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FIGURE l.—Index map showing location of the Steele Butte
Quadrangle.

PREVIOUS WORK

The Henry Mountains region was first studied by Gil-
bert (1877) who described the general stratigraphy and
structure. Hunt (1946, Hunt and others 1953) completed a
more detailed investigation of the area, and Doelling and
Graham (1972) and Doelling (1975) studied the regional
geology, emphasizing the economic resources. Uresk
(1979) and Hill (1982) concluded the Ferron Sandstone re-
sulted from fluvial-dominated deltaic processes. In the
Utah Geological Association Henry Mountains Sym-
posium of 1980, Stokes reported on the Triassic and Juras-
sic stratigraphy; Peterson, Ryder, and Law described the
stratigraphy, sedimentology, and regional correlations of
the Cretaceous System; and Law presented a regional
study of depositional patterns in the Muley Canyon
Sandstone.
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STRATIGRAPHY AND SEDIMENTATION
GENERAL STATEMENT

Rocks exposed in the Steele Butte Quadrangle are sum-
marized in figure 2. Outcrop locations are displayed on
the geologic map published in the Utah Geological and
Mineral Survey Map Series (Whitlock 1984).

Mesozoic rocks have been upwarped by Eocene ig-
neous intrusions. Jurassic units exposed in the northeast
corner of the quadrangle include the Entrada Sandstone,
Curtis Formation, Summerville Formation, and Salt Wash
and Brushy Basin Members of the Morrison Formation.
Cretaceous Cedar Mountain Formation, Dakota Sand-
stone, and Tununk Shale and Ferron Sandstone Members
of the Mancos Shale are exposed only néar igneous intru-
sions in the northeast corner. Blue Gate Shale, Muley
Canyon Sandstone, and Masuk Shale Members of the
Mancos Shale and the Tarantula Mesa Sandstone are ex-
posed throughout the quadrangle. “Beds on Tarantula
Mesa” (Peterson and Ryder 1975, p. 180-81) are pre-
served in the center of the mesa near the southern margin
of the map area. Early Tertiary igneous intrusions of
Mount Ellen have penetrated the sedimentary rocks and
crop out in the northeast corner of the map area. ‘

Unconsolidated Quaternary deposits occur as pediment
gravel and lobes of alluvial terrace gravel in the eastern
half of the quadrangle and eolian loess and sand on Taran-
tula Mesa.

JURASSIC SYSTEM

Entrada Sandstone

Hunt and others (1953, p. 70-72) reported that the En-
trada Sandstone ranges in thickness from 91 m (300 ft) at
the southern end of the San Rafael Swell to 213 m (700 ft)
in the southern Henry Mountains. They described west-
to-east facies variations, as a red, earthy, thin- to thick-
bedded, silty sandstone in the west and clean, massive,
cliff-forming sandstone in the east.

Entrada Sandstone crops out in the northeastern corner
of the quadrangle near igneous intrusions. Beds are ex-
posed as reddish sandstone ledges in canyon exposures in
the NE Y, section 14, T. 31 S, R. 9 E. In the extreme
northeast corner they cap a ridge above an igneous
intrusion.
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No complete section of Entrada Sandstone is exposed in
the quadrangle; however, a partial section was measured
south of Dugout Creek in the SW %, section 24, T. 31 S,
R. 9 E (Morton 1984, appendix). There the formation is
pale red to very pale orange, very fine to fine-grained
sandstone and minor siltstone, characteristic of Hunt and
others’ earthy facies. Sandstone is cemented by calcite
and contains minor gypsum. The rocks are typically very
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thin to medium bedded, although one unit is massive. The
formation weathers to ledges and slopes with low out-
crops (fig. 3). Smith (1976, p. 140) interpreted units sim-
ilar to the earthy facies as deposited in an interdeltaic-
coastal environment. No fossils were found in the Entrada

Sandstone.

The base of the Entrada Sandstone is not exposed in the
quadrangle. The upper contact with the Curtis Formation
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FIGURE 2.—General stratigraphic column of rocks exposed in the Steele Butte Quadrangle.
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is disconformable throughout most of the region (Hunt

and others 1953, p. 71), although evidence of erosion was

not apparent in limited exposures in this quadrangle.

Curtis Formation

The greenish sandy Curtis Formation thins from 53 m
(175 ft) at the southern edge of the San Rafael Swell to a
feather edge at the northern end of Tarantula Mesa (Hunt

and others 1953, p. 72). Hunt interpreted this thinning as |

a result of the southward change from Curtis to Summer-
ville lithology.

Curtis Formation is exposed in two areas in the quad-
rangle. In the NE %, section 14, T. 31 S, R. 9 E, it is a thin
greenish gray siltstone that forms a ledgy slope above the
Entrada Sandstone. That outcrop is truncated at the north

by an east-west-trending fault. North of that fault the for- .

mation forms a thin band west and southwest of a broad
ridge capped by Entrada Sandstone. ' '

The Curtis Formation measured south of Dugout Creek
(Morton 1984, appendix) in the SW 14, section 24, T. 31 S,
R. 9 E, is 9 m of glauconitic, calcareous siltstone and sub-
ordinate shale. It is light greenish gray and weathers very
light greenish gray, in contrast to the adjacent red En-
trada Sandstone and Summerville Formation. Bedding is
thinly laminated to thin bedded, with abundant ripple
marks, and weathers to a ledge-and-slope topography (fig.
3). Working in the San Rafael Swell, Smith (1976, p. 154)
concluded that the Curtis Formation was deposited in
warm, shallow, low-energy marine waters. Gilluly and
Reeside (1928, p. 79) reported middle Upper Jurassic ma-
rine fossils from the Curtis Formation in the San Rafael
Swell. The upper contact with the Summerville Forma-
tion is gradational and conformable.

Summerville Formation

Hunt and others (1953, p. 73) described the Summer-
ville Formation as sandstone and shale distinguished by
regular bedding and reddish brown color. The formation
ranges from 76 m (250 ft) thick in the northern part of the
region to 12 m (40 ft) thick near Halls Creek, approx-
imately 30 km south of the quadrangle.

The Summerville Formation is exposed in the NE Y4,
section 14, T. 31 S, R. 9 E, where it occurs in a continuous
outcrop across two ridges. An east-west-trending fault has
uplifted the northern outcrop belt. The formation erodes
to ledges and slopes between the resistant Entrada Sand-
stone and the Salt Wash Member of the Morrison Forma-
tion (fig. 3). ,

A complete section of the Summerville Formation was
measured immediately east of the quadrangle, south of
Dugout Creek (Morton 1984, appendix). There it is 59 m
of pale reddish brown to light brownish gray siltstone and
shale, interbedded with reddish, iron-stained gypsum.

W. W. WHITLOCK

FIGURE 3.—View southeast across Dugout Creek of Jurassic
Entrada Sandstone (1), Curtis Formation (2); Summierville For-
mation (3), and Salt Wash Member of the Morrison Formation

).

Siltstone and shale contain abundant disseminated calcite
and gypsum. Stanton (1976, p. 60) interpreted similar li-
thologies of the Summerville Formation in the San Rafael
Swell as tidal-flat deposits.

The Summerville Formation is defined as Late Jurassic
on the basis of its position between the fossiliferous Curtis
and Morrison formations (Gilluly and Reeside ‘1928, p.
80).

Contact with the Curtis Formation is gradational, and
the boundary was mapped above the uppermost greenish,
glauconitic siltstone. The Summerville Forma-
tion-Morrison Formation contact is a prominent dis-
conformity in the northern part of the region but becomes
less apparent toward the south (Hunt and others 1953; p.
73). An unconformable boundary was not apparent in this
quadrangle. Contact with the Morrison Formation was
mapped at the top of the uppermost massive gypsum of
the Summerville Formation.

Moirison Formation

The Morrison Formation is 150-180 m (500-600 ft) of
conglomerate, sandstone, mudstone, shale, limestone,
massive clay, and gypsum (Hunt and others 1953, p.
75-76). Hunt and others divided the formation into the
lower Salt Wash Sandstone Member and upper, unnamed
clayey member. The clayey unit is the Brushy Basin Mem-
ber of Gregory (1938, p. 59).

Salt Wash Member. In the Henry Mountains region,
the Salt Wash Member is composed of 46-145 m
(150-475 ft) of lenticular claystone and shale with inter-
bedded lenses of sandstone and conglomerate (Hunt and
others 1953, p. 75).

The Salt Wash Member is widely exposed in the north-
east corner of the quadrangle. North of Dugout Creek, a
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normal fault has offset the western half of the Salt Wash

outcrop and exposed seven prominent sandstone ledges.
- This number contrasts with three prominent sandstones in

the measured section and indicates the stratigraphy is re-

peated because of faulting. South of Dugout Creek, an ig-

neous intrusion caused minor reverse faults in the Salt
~ Wash Member.

A section of the Salt Wash Member was measured south
of Dugout Creek in the SW %, section 24, and NW 14, sec-
tion 25, T. 31 S, R. 9 E (Morton 1984, appendix). There
the member is 118 m of grayish orange to brownish gray
sandstone interbedded with subordinate reddish and
greenish, bentonitic mudstone. Sandstone is medium
grained to granular in the upper 46 m and very fine to fine
grained, with minor gravel lenses, in the lower part. Sand-

stone and mudstone are cemented by calcite and contain -

minor iron oxide. Thick to massive bedded sandstone
forms prominent cliffs and laminated to thin-bedded sand-
stone and mudstone form minor ledges and slopes (fig. 3).
Lenses of cross-bedded, gritty sandstone occur in the mas-
sive cliffs. Craig (1955, p. 150-51) interpreted the Salt
Wash Member as fluvial-channel and floodplain deposits.

Hunt and others (1953, p. 75) reported a distinct ero-
sional unconformity separating Morrison and Summer-
ville beds in several localities but noted the contact nor-
mally has to be traced over a considerable distance to
distinguish the disconformity. There was no disconformity
apparent between Salt Wash Sandstone and Summerville
Formation in the map area. ‘

Brushy Basin Member. Hunt and others (1953, p. 75,
76, pl. 4) reported this upper clayey part of the Morrison
Formation is 38-114 m (124-375 ft) thick and consists of a
lower variegated clay member and an upper gray clay
member. Craig (1955, p. 155-56, fig. 29) included the clay
units of the Morrison Formation in the Brushy Basin
Member in the Henry Mountains region.

The Brushy Basin Member crops out as broad slopes in
the northeast corner of the quadrangle (fig. 4). North of
Dugout Creek, the Buckhorn Conglomerate or gravel cap
the Brushy Basin slope. The member is associated with an
igneous intrusion and truncated by a fault south of Dug-
out Creek.

A section of Brush Basin Member was measured 0.4 km

- north of Dugout Creek in the NE %4, section 23, T. 31 S, R.
9 E. There the member is 37 m of interbedded pale green-
ish yellow claystone and moderate red mudstone. Bent-
onite in the claystone and mudstone give the soil a “pop-
com” texture. Beds are thinly laminated to very thin
bedded and form a slope with minor ledges of siltstone
and sandstone. Brushy Basin sediments were deposited in
fluvial and lacustrine environments on a broad, undis-
sected plain, with bentonitic clay resulting from volcanic
ash falls (Craig 1955, p. 159-60).

FIGURE 4.—Brushy Basin Member (2) forms a slope between
ledges of Salt Wash Member of the Morrison Formation (1) and
the Buckhorn Conglomerate Member of the Cedar Mountain
Formation (3).

Contact with the Salt Wash Member is conformable.
The boundary was mapped at the top of the uppermost
Salt Wash sandstone, below Brushy Basin claystone and
shale.

CRETACEOUS SYSTEM

Cedar Mountain Formation

The Cedar Mountain Formation consists of the Buck-
horn Conglomerate Member and an upper shale member
and was named for exposures along the southwestern
flank of Cedar Mountain, Emery County, Utah (Stokes
1944, p. 965-66). The Buckhorn Conglomerate was origi-
nally defined as a formation but was reduced to a member
of the Cedar Mountain Formation because of its dis-
continuous nature (Stokes 1952, p. 1774). The Cedar.
Mountain Formation is Lower Cretaceous and is uncon-
formably overlain by the Dakota Sandstone (Peterson
1980, p. 152-53).

Buckhorn Conglomerate Member. The Buckhorn Con-
glomerate occurs in outcrops separated by minor faults
and younger gravel cover. The member erodes to sand-
stone and conglomerate slopes and ledges between the
less resistant Brushy Basin Member and an upper shale
member of the Cedar Mountain Formation (fig. 4).

A section measured 0.3 km north of the road in section
23, T. 31 S, R. 9 E, contains 16.5 m of brownish gray to
yellowish brown sandstone and conglomerate. Sandstone
is thin bedded with cross laminations and composed of
fine-grained quartz with calcite cement and abundant
iron oxide. Conglomerate is composed of chert and
quartzite pebbles in a medium-grained sand matrix. It is
massively bedded and forms a cliff. The member is ex-
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tremely variable in thickness and composition. A section
measured 50-100 m southeast is composed of 7.5 m of cal-
careous sandstone. The Buckhorn Conglomerate was de-
posited by fluvial and eolian processes (Stokes 1944, p
976-77). Throughout the Colorado Plateau, an uncon-
formity at the base of the Buckhorn Conglomerate is rep-
resented by truncation of the Brushy Basin Member
where shales are cut and channeled (Stokes 1944, p. 976).

Upper Member. The upper member of the Cedar
Mountain Formation occurs in contact with the Buckhorn
Conglomerate Member in sections 23 and 26, T. 31 S, R. 9
E, north and south of Dugout Creek. Alluvial terrace
gravel and slope wash cover equivalent beds to the north.

'A section of the upper member was measured 0.3 km
north of the road in section 23, T. 31 S, R. 9 E. There the
member is 8.0 m of light brownish gray shale with inter-
bedded minor sandstone and siltstone. Shale is carbo-
naceous in the upper half and silty in the lower half. The
entire unit is thinly laminated to laminated and forms a
slope (fig. 5). Stokes (1944, p. 977-78) suggested that the
upper member formed from reworked Brushy Basin
shales.

Dakota Sandstone

Several authors (Stokes 1944, Craig and others 1961)
have considered the problem of correlating the Dakota
Sandstone and Cedar Mountain Formation. Peterson and
others (1980, p. 153) concluded that the Dakota Sand-
stone is stratigraphically higher than the Cedar Mountain
Formation and they are separated by an unconformity.
They described the Dakota Sandstone as interbedded gray
sandstone, carbonaceous mudstone, and coal. The forma-
tion averages 10 m (35 ft) thick but reaches a maximum 30
m (100 ft) thick.

Dakota Sandstone crops out as a series of slopes and
ledges north and south of Dugout Creek. The outcrop is
disrupted by normal faults and is often covered by pedi-
ment gravel and alluvial gravel north of Dugout Creek.
South of Dugout Creek the unit crops out in association
with an igneous intrusion.

A section measured in the north half of section 23, T. 31
S, R. 9 E, includes 12 m of interbedded pale orange to
grayish yellow sandstone and siltstone. Units are com-
posed of silt-size to fine-grained quartz sand with cal-
careous cement and minor gypsum and iron oxide.
Gryphaea and Ostrea shells occur throughout the forma-
tion, locally comprising up to 50% of individual beds.
Beds are thinly laminated to thin bedded, but often bed-
ding is strongly bioturbated. The formation weathers to a
ledge-and-slope topography (fig. 5). The Dakota Sand-
stone represents a transgressive sequence of fluvial depos-
its at the base, overlain by beach and shallow-marine de-
posits (Lawyer 1972).

- I L oL !
FIGURE 5.—Fault has placed the Buckhorn Conglomerate (1)
against the upper member (2) of the Cedar Mountain Formation
and the Dakota Sandstone (3). View immediately north of the
road near Dugout Creck.

Fossils collected from the upper part of the formation
indicate an Upper Cretaceous age. Contact with the over-
lying Tununk Shale Member of the Mancos Shale is
gradational and conformable.

Mancos Shale

Mancos Shale blankets most of the Steele Butte Quad-
rangle. Gilbert (1877) divided the Mancos Shale into Tu-
nunk Shale, Tununk Sandstone, Blue Gate Shale, Blue
Gate Sandstone, and Masuk Shale in the Henry Mountains
region. Tununk and Blue Gate Sandstones were renamed
Ferron and “Emery” Sandstones for similar stratigraphic
units on the Wasatch Plateau (Hunt 1946, p. 8). Maxfield
(1976) and Peterson and others (1980) suggested, on the
basis of paleontologic studies, that the Masuk Shale and
“Emery” Sandstone Members on the Wasatch Plateau
correlate to the Blue Gate Shale in the Henry Mountains
region. Smith (1983) renamed the “Emery” Sandstone in
the Henry Mountains area as the Muley Canyon Sand-
stone for exposures south of Tarantula Mesa, at the head
of Muley Canyon. The name Masuk Shale Member is re-
tained because the type locality is in the Henry Mountains
region. Present usage is shown in figure 2.

Tununk Shale and Ferron Sandstone are exposed only
in the northeast corner of the quadrangle. The Blue Gate
Shale, Muley Canyon Sandstone, and Masuk Shale Mem-
bers are of major interest because of their extensive out-
crops and close association with the economically impor-
tant coal-bearing strata of the Muley Canyon Sandstone.

Tununk Shale Member. Peterson and others (1980, p.
155) reported the Tununk Shale is 160-220 m (532-717 ft)
thick and is composed of medium to dark gray, bentonitic
shale. -
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Tununk Shale crops out as nonresistant slopes capped
by Ferron Sandstone or pediment gravel in a belt that ex-
tends from the NW 14, section 23, to the SW 14, section 11,
T. 318, R. 9 E (fig. 6). South of Dugout Creek, in section
26, T. 31 S, R. 9 E, an igneous intrusion has isolated an
outcrop of the Tununk Shale above the intrusion.

A section of Tununk Shale was measured along a tra-
verse from the NW 14, section 23, to the center of the sec-
tion 14 and section 15, T. 31 S, R. 9 E, boundary. There
the member is 134 m of medium bluish gray shale with
thin beds of yellowish orange sandstone. Thickness of the
measured section (134 m), compared to other sections
(160-220 m) in the Henry Mountains region, may have re-
sulted from errors in measurements where exposures are
covered by pediment gravel. Shale is cemented with cal-
cite and contains gypsum, bentonite, and silt that cause
“punky”- and “popcorn”-textured soil. Bedding is thinly
laminated to laminated and weathers to a slope with mi-
nor satidstone ledges.

Peterson and others (1980, p. 155) concluded that the
Tununk Shale is laté Cenomanian to middle Turonian age,
on the basis of the océurrence of ammonites and pelecy-
pods. Lessard (1973) suggested the member was deposited
in shallow to open marine environments as the sea trans-
gressed then regressed in response to development of Fer-
ron deltas.

Contact with the Ferron Sandstone is gradational, and
the boundary is placed at the basal sandstone ledge of the
Ferron Member.

Ferron Sandstone Member. Hunt and others (1953, p.
81-83, fig. 21) divided the Ferron Sandstone into a lower
unit of interbedded sandstone and shale, overlain by a
massive sandstone unit, and capped by lenticular carbo-
naceous shale, coal, and sandstone. Thickness ranges from
91 m (300 ft) along the western edge of the region to 46 m
(150 ft) on the eastern edge of the basin.

Ferron Sandstone crops out in the northeast corner of
the quadrangle as prominent cliff-forming sandstone
overlying interbedded sandstone and shale (fig. 7). Shale,
coal, and sandstone beds at the top of the unit are easily
eroded and covered by gravel.

A partial section of the Ferron Sandstone was measured
from the SW 1, section 11, to the SE %, section 10, T. 31
'S, R. 9 E. There the member is 76 m of interbedded sand-
stone and shale, overlain by a massive cliff-forming sand-
stone, with carbonaceous shale on top. Alluvial terrace
gravel covers the top of the unit. Morton (personal com-
munication 1982) measured a section of the Ferron Sand-
stone in the NE 14, section 12, T. 31 S, R. 9 E. Above the
massive sandstone are 5 m of shale and coal capped by a
calcareous sandstone. Sandstone in the lower part of the
unit is yellowish orange to yellowish brown and very fine
to fine grained with minor calcite and iron oxide cement.
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FIGURE 6.—Tununk Shale slope capped by pediment gravel in
the northeast corner of the quadrangle.

stone ledges above Tununk Shale slope, exposed in Dry Wash.

It is very thin to very thick bedded with trough cross-
beds, channels, and current ripples. Medium gray to
brownish gray silty shale is interbedded with the sand-
stone and weathers to a ledge-and-slope topography (fig.
).

The cliff-forming sandstone is very pale orange, very
fine to fine grained, contains kaolinite and iron oxide, and
is thick to massively bedded. Laminated light bluish gray
shale forms a slope above the massive sandstone.

Contact with the Blue Gate Shale is locdlly dis-
conformable (Hunt and others 1953, p. 83). Morton (per-
sonal communication 1982) reported a pebble con-
glomerate at the base of the Blue Gate Shale in section 13,
T. 32 S, R. 9 E, that documents the disconformity. Peter-
son and others (1980, p. 159) suggested, because of the ab-
sence of six ammonoid faunal zones, that the erosional un-
conformity represents most of late Turonian and all of
Coniacian time. Uresk (1979) and Hill (1982) determined
that the Ferron Sandstone formed from fluvial and deltaic
processes as the Notom Delta prograded eastward.



148

Blue Gate Shale Member. The Blue Gate Shale Mem-
ber is similar in appearance to the Tununk Shale. Hunt
and others (1953, p. 83) described the member as 425 m
(1,400 ft) or dark gray shale. They divided it into a homog-
eneous shale unit in the lower two-thirds, overlain by a
unit of interbedded shale and platy sandstone.

Outcrops of Blue Gate Shale occur along the east side
of the quadrangle in a belt of north-south-trending
cuestas. An east-facing slope of Blue Gate Shale is capped
by the resistant Muley Canyon Sandstone Member (fig. 8).
An isolated outcrop occurs as an inlier in a deep canyon in
the SW 14, section 2, T. 32 S, R. 9 E. There the massive
cliff-forming Muley Canyon Sandstone has been
breached, exposing interbedded shale and sandstone of
the Blue Gate Shale (fig. 9).

Blue Gate Shale, measured near Mud Spring, section
10, T. 31 S, R. 9 E, consists of 394 m of shale. The lower
194 m, including the Ferron Sandstone-Blue Gate Shale
contdct, is covered by alluvial terrace gravel, but isolated
outcrops show these beds. Shale is olive gray to grayish or-
ange; contains disseminated calcite, bentonite, and gyp-
sum and gypsum stringers; and is thinly laminated to lami-
nated. The upper 15 m of the member is interbedded
shale and light brown sandstone that form a ledgy slope.
Locally, at Stevens Narrows, ball-and-pillow structures
occur in the sandstone. Smith (1983, appendix) measured
a section of the Blue Gate Shale in the southeastern corner
of the quadrangle in sections 13 and 14, T. 32 S, R. 9 E.
There the member is 416 m of homogeneous shale, with
interbedded sandstone in the upper 40 m.

Contact with the Muley Canyon Sandstone Member is

gradational. The boundary was placed at the top of the in-
terbedded shale and sandstone zone that is overlain by

ledge-forming sandstone of the Muley Canyon Member. -

Peterson and others (1980, p. 159) reported the Blue Gate
Shale is late Santonian to early Campanian in age on the
basis of paleontologic evidence.

Blue Gate Shale sediments were deposited in normal-
marine, prodelta and transition zone deltaic environ-
ments. The regressive sequence was deposited in response
to progradation of the Muley Cariyon Sandstone delta. In-
vertebrate fossils collected from the lower part of the
Blue Gate Shale suggest deposition in normal-marine wa-
ters 60-120 m (200-400 ft) deep (Peterson and others
1980, p. 159). Benthonic foraminifera in the middle of the
member indicate a shoaling seaway due to increasing
proximity to the prograding shoreline (Maxfield 1976, p.
83).

The upper quarter of the Blue Gate Shale is inter-
bedded sandstone and shale, characteristic of transition
deposits between prodelta shale and delta front sandstone.
Sand was deposited as storm waves initiated seaward
transport of shoreface sand (Balsley 1982, p. 76). Ball-and-
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FIGURE 8.--Prominent cuesta on east side of quadrangle, com-
posed of Blue Gate Shale slope capped by Muley Canyon Sand-
stone. In the background, Masuk Shale flat and slope are capped
by Tarantula Mesa Sandstone cliffs.

5.

FIGURE 9.—Interbedded sandstone and shale of Blue Gate
Shale transitional facies, exposed in canyon in SW Y4, section 2,
T.32S,R.9E.

pillow structures in the transition facies at Stevens Nar-
rows indicate rapid deposition of the sand onto water-sat-
urated mud (Reinick and Singh 1973, p. 78). Hubert and
others (1972, p. 1656) described ball-and-pillow structures
in the transition facies in the Cody-Parkman Delta of
Wyoming. These structures formed as sand was deposited
on loosely packed deltaic mud on a surface that dipped
1°-2° seaward. Pillow structures are locally developed
within the quadrangle, which suggests the prodelta sur-
face had a slope of 1° or less across most of the area.

Muley Canyon Sandstone Member. The Muley Can-
yon Sandstone (Smith 1983), formerly identified as the
Emery Sandstone, is the major coal-bearing unit in the
Henry Mountains coal basin.

Hunt and others (1953, p. 84-85, 216-17) described the
member as approximately 76 m (250 ft) of sandstone,
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shale, and coal. They placed the upper contact of the
member at the top of the carbonaceous shale-coal zone
and included all overlying sandstone in the Masuk Shale
Member.

Doelling (with others 1972, 1975) divided the member
into a lower unit of thick-bedded sandstone with minor
shale; a middle cliff-forming sandstone unit; and an upper
unit of coal and carbonaceous shale overlain by resistant
sandstone.

Peterson (1975, with others 1980) described the Muley
Canyon Sandstone at 91-136 m (298-446 ft) of sandstone,
mudstone, and coal. He divided the member into a lower
cliff-forming sandstone and an upper unit of interbedded
sandstone, mudstone, shale, and coal. Peterson and others
(1980) concluded that the Muley Canyon Sandstone is
early Campanian on the basis of regional correlations and
its association with the fossiliferous Masuk Shale Member.

Law (1980) divided the Muley Canyon Sandstone
Member into a lower unit of regressive, marginal marine
sandstone and an upper unit of fluvial- and tidal-deposited
sandstone, siltstone, carbonaceous mudstone and shale,
and coal. He mapped and measured the coal zone and
completed a basinwide correlation of all coal sections
measured by Hunt, Averitt, Miller, Doelling, Graham and
himself.

Three additional sections of Muley Canyon Sandstone
Member were measured during the present study: (1) one
along Blind Trail, in the eastern half of section 27, T. 31 S,
R. 8 E, of the Notom, Utah 15-minute Quadrangle, (2) one
south of Steele Butte, in the western half of section 34 and
the SE 14, section 33, T. 31 S, R. 9 E, and (3) one at Stevens
Narrows, in the SW 14, section 14, and the NW Y%, section
23, T. 32 S, R. 9 E. The member is 105 m thick at Blind
Trail, 109 m thick at Stevens Narrows, and 119 m thick
south of Steele Butte.

The Muley Canyon Member is divided into three infor-
mal map units (fig. 10) designated as Muley Canyon-1: a
lower unit of ledge and cliff-forming sandstone with mi-
nor shale; Muley Canyon-2: a middle unit of interbedded
carbonaceous shale, coal, and lenticular sandstone; Muley
Canyon-3: an upper unit of sandstone. They correspond
with units mapped by Smith (1983) in the adjacent Mount
Pennell 2 NW Quadrangle.

Muley Canyon-1. The Muley Canyon-1 unit holds up
cuestas in the eastern half of the quadrangle (fig. 8) and
forms a bench along Sweetwater and Dugout Creeks in
the northwest corner of the quadrangle. The unit ranges
in thickness from 75 m at Blind Trail to 72 m at Stevens
Narrows to 63 m near Steele Butte. It is predominantly
sandstone with minor partings or thin beds of shale. Sand-
stone varies from yellowish gray and light brown, in the
lower two-thirds of the unit, to a lighter colored very pale
orange and grayish yellow above. It is composed of
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FIGURE 10.—Stratigraphic column of Muley Canyon Sand-
stone section measured along Blind Trail, showing map unit
divisions.
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75%-90% quartz, 5%-10% chert, and 5%-10% calcite ce-
ment. Sandstone in the lower part contains minor iron
oxide, which stains the rocks orange.

Grain size coarsens upward from very fine sand at the
base to medium-grained sand at the top, in the section
measured at Blind Trail. Near Steele Butte and Stevens
Narrows the sequence coarsens upward to medium- or
fine-grained sandstone but then becomes very fine
grained in the upper 1-10 m. The unit is generally me-
dium to massive bedded, but may be thin bedded in the
upper part, as seén in the upper 15 m near Steele Butte.
Muley Canyon-1 beds hold up ledges separated by minor
slopes in the lower quarter, but form massive cliffs in the
upper part (fig. 11).

Several types of sedimentary structures occur in the
Muley Canyon-1 beds. Horizontally bedded sandstone
and shale with sandstone lenses occur-near the base.
Above the basal section, trough cross-beds and occasional
horizontal beds occur in ledge- and cliff-forming sand-
stones, and ripple laminations occur in shale partings.
Sandstone beds in the upper one-third of the unit contain
trough cross-beds with horizontal beds at the top.

Trace fossils are sparse, although burrows were recog-
nized at the base of one massive cliff-forming unit at Blind
Trail, and Ophiomorpha? was noted in one outcrop in the
SW 14, section 15, T. 31 S, R: 9 E, south of Dry Wash, Pe-
terson and others (1980, p. 161) identified Ophiomorpha,
Arenicolites, and Thalassinoides in the unit in the central
part of the Henry Mountains region.

Contact with the Muley Canyon-2 unit is sharp and was
mapped at the upper boundary of the cliff-forming sand-
stone, which is overlain by coal or carbonaceous shale.

Sedimentary structures and a coarsening-upward se-
quence in the Muley Canyon-1 sandstone indicate deposi-
tion along a prograding, wave-dominated shoreline.
Muley Canyon-2 delta plain sediments suggest the Muley
Canyon-1 séquence was deposited in a wave-dominated
deltaic environment, instead of a barrier island capped by
lagoonal deposits. Thick, laterally extensive Muley Can-
yon-1 sandstone is characteristic of a wave-dominated
deltaic sequence in which sediments are reworked along
the shoreline by miarine processes. This sand body con-
trasts with lobate or digitate sands of fluvial- or tidal-dom-
inated deltaic environments.

The lower part of Muley Canyon-1 section is flat-bed-
ded, very fine-grained sandstone and subordinate shale.
Sandstone contains minor oscillation ripples. These beds
comprise the lower 40 m in the section south of Steele
Butte, but only the lower 10 m along Blind Trail. The
rocks represent the lower shoreface facies of the deltaic
sequence. Balsley (1982, p. 79) described a similar se-
quence of rocks in the Blackhawk Formation. He also re-
ported storm-produced hummocky stratification; how-

FIGURE 11.—Massive sandstone cliffs of Muley Canyon-1 unit
exposed along Blind Trail.

ever, this structure was not recognized in this facies
within the quadrangle.

Lower shoreface deposits result from sedimentary pro-
cesses below effective wave base. Horizontal beds with
minor ripples form during fair weather, and hummocky
stratification results as storm waves erode fair-weather
structures to form undulatory surfaces (Balsley 1982, p.
90).

Above the lower shoreface deposits is massive, trough
cross-bedded sandstone with minor thin- to medium-bed-
ded sandstone and laminated shale. The sandstone coars-
ens upward from very fine grained, at the base, to fine or
medium grained at the top. This sequence comprises the
upper 60 m of the Muley Canyon-1 unit at Blind Trail and
approximately 20 m near Steele Butte. Deposits are char-
acteristic of the upper shoreface facies described by Bals-
ley (1982, p. 97-99) in the Blackhawk Formation of east
central Utah. He stated that upper shoreface deposits in-
terfinger laterally with distributary mouth bars, but noted
channels are widely separated in wave-dominated deltas.
Distributary mouth bars were not identified in thls umt
within the quadrangle.

South of Steele Butte, a thin sandstone unit occurs
above the upper shoreface deposits. It is composed of very
fine to fine-grained quartz sand and contains horizontal to
slightly inclined bedding with minor trough' cross-beds.
This is the foreshore facies which forms by wave swash
and backswash (Balsley 1982, p. 108). A coiresponding
vertical sequence with similar interpretations has been
described by Balsley (1982) for the Blackhawk Delta in
east central Utah and by Hubert and others (1972) for the
Cody-Parkmar Delta in Wyoming.

Muley Canyon-2. The unit designated as Muley Can-
yon-2 is composed of up to 25 m of carbonaceous shale
and siltstone, coal, and sandstone (flg 12). It crops out
along the west side of the cuestas in the northeastern
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FIGURE 12.—Muley Canyon-2 unit exposed south of Steele
Butte.

quarter of the quadrangle. In the northwest quarter of the
map area, the unit is exposed from Wildcat Mesa almost
to Steele Butte.

Twenty-seven coal sections were measured throughout
the quadrangle. In most sections a thin carbonaceous shale
is at the base, and similar rocks are interbedded through-
out the unit. Shale is brownish gray, laminated, and
rooted, and it contains plant material.

Coal seams are discontinuous and vary in thickness over
short distances (fig. 13). Law (1980, p. 326) stated that the
coal is subbituminous A to high volatile C bituminous in
rank. It contains sulfur and resin, along the cleats and dis-
seminated throughout the coal, and abundant to sparse
vitrain. Cleats are prominent to poorly developed. Coal
may be capped by carbonaceous shale, but often siltstone
or sandstone are above and grade upward to carbonaceous
shale or siltstone. The coal is discussed in more detail
below.

Sandstone beds average 2-3 m thick but reach a max-
imum of 10 m thick and commonly separate the coals.
Sandstone is pale yellowish orange and contains 75%-80%
very fine to fine-grained quartz with minor chert and cal-
cite cement. Trough cross-beds are present throughout
the sandstone.

The Muley Canyon-2 unit forms a slope between more
resistant sandstone above and below. The upper contact
was mapped at the youngest coal or carbonaceous shale,
which is generally capped by cliff-forming sandstone or
sometimes by nonresistant mudstone of Muley Canyon-3.
The discontinuous and interfingering carbonaceous shale
and siltstone, coal, and sandstone of the Muley Canyon-2
" unit represent deposition in a delta-plain environment.

The lower part of the unit is a coal zone, with thin shale
or sandstone beds and partings. Lower coal seams are
more laterally extensive than those in the upper part of
the unit. These sediments are similar to lower delta-plain

deposits described by Horne (1979, p. 295-300) in eastern
Kentucky and southern West Virginia. Lower delta plain
sediments are deposited primarily in interdistributary
marshes and swamps with minor distributary channel
influence.

A sandstone channel in the lower part of the Muley
Canyon-2 unit contains bidirectional trough cross-beds
that suggest tidal influence (Law 1980, p. 329, 332). These
beds may have accumulated in environments like those
described by Allen (1970, p. 144, 145), where meandering
tidal creeks occur in mangrove swamps of the Niger
Delta.

Sediments above the lower delta-plain deposits consist
of carbonaceous shale and siltstone, discontinuous coals,
and prominent sandstone, or sometimes only sandstone.
Sandstone contains abundant trough cross-beds. These
rocks are characteristic of upper delta-plain deposits.
Home (1979, p. 296) reported that similar upper delta-
plain deposits in eastern Kentucky are dominated by lin-
ear, lenticular sandstone channels. Ferm and others (1979,
p- 605) described upper delta-plain coals as relatively
thick but of limited areal extent, as compared to thin but
widespread lower delta-plain coal seams. The coal and
carbonaceous shale and siltstone formed in backswamp
environments.

Muley Canyon-3. Muley Canyon-3 consists of ledge-
and-slope or massive cliff-forming sandstone with minor
shale. Thickness of the unit is variable, ranging from 17 m
at Blind Trail (fig. 14) to 50 m south of Steele Butte (fig.
15).

Beds of Muley Canyon-3 crop out in the same areas as
the lower two units; in the belt of cuestas on the east side
of the quadrangle and in the northwest quarter of the map
area. '

Sandstone in this unit is very pale orange, dark yellow-
ish orange, or pale yellowish brown. It is very fine to fine
grained and consists of 75%-80% quartz, 5%-10% chert,
5%-10% calcite cement, and 10% iron oxide. Beds range
from very thin to massive with occasional platy, iron-
oxide-stained beds. ‘

Several sedimentary features were recognized in the
section south of Steele Butte. Ripped-up blocks (up to 0.3
m in diameter) of coal and carbonaceous shale were seen
in sandstone at the base of Muley Canyon-3. Similar
blocks occur several hundred meters to the south. These
blocks resulted as streams deposited the Muley Canyon-3
sandstone and scoured the coal and carbonaceous shale
below. Trough cross-beds are abundant and indicate a
current flowing N 70° E.

The upper sandstone becomes massive south of Steele
Butte (fig. 15). Channel sands occur on erosional surfaces
cut on the underlying carbonaceous unit.

A channel fill exposed on the west bank of Sweetwater
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FIGURE 14.—Muley Canyon-3 (1) unit forms ledge in lower right corner of photograph. Broad slope is composd of Masuk Shale-1
(2), Masuk Shale-2 (3), and Masuk Shale-3 (4), capped by massive Tarantula Mesa Sandstone cliffs (5). View east-southeast of Blind

Trail.

Creek, in the NE %, section 25, T. 31 S, R. 8 E, cut into .

the underlying coals (fig. 16). That channel appears to
have an east-west trend.

An interfingering relationship between beds of Muley
Canyon-3 and Muley Canyon-2 occurs on the east and
west banks of Sweetwater Creek, in section 24, T. 31 S, R.
8 E. In a north-south cross-sectional view, sandstone at
the base of Muley Canyon-3 interfingers with, then pinch-
es out to the north within carbonaceous shale and coal of
Muley Canyon-2. The upper part of Muley Canyon-3
overlies the carbonaceous zone and is continuous across
the area. This appears to have resulted from two coalesc-
ing sandstones in the upper unit.

Muley Canyon Sandstone is conformably overlain by
Masuk Shale. The upper contact of the Muley Canyon
Sandstone Member has been mapped at different stra-
tigraphic horizons by previous authors. Hunt and others
(1953, p. 84-85) placed the upper contact of the member
at the top of the carbonaceous shale-coal zone and includ-
ed all overlying sandstone in the Masuk Shale Member
(unit 10, fig. 10). Doelling and Graham (1972, p. 110) de-
fined the top of the Muley Canyon Sandstone as the top of
all massive sandstone beds above the coal zone (approx-
imately unit 32, fig. 17). Peterson and others (1980, p. 162)
and Law (1980, p. 326) placed the contact stratigraphi-
cally higher, at the top of the interval of fairly abundant
sandstone beds and the base of an interval of sparse sand-
stone beds and abundant mudstone (approximately unit
33, fig. 17). In this report, the upper contact of the Muley
Canyon Sandstone Member was placed stratigraphically
lower than Doelling and Graham and Peterson and others
mapped it, at the top of a continuous sandstone body that

: t g
i . o ! " ST

FIGURE 15.—~Muley Canyon-3 unit forms massive cliffs be-
tween Steele Butte and Stevens Narrows.

overlies the middle carbonaceous unit (fig. 10). Above the
contact, carbonaceous mudstone and shale are inter-
calated with abundant, but discontinuous sandstone beds.
Throughout the quadrangle, thick, lenticular sandstone
bodies similar to the Muley Canyon-3 unit occur in beds
mapped as Masuk Member. These younger lenses pinch
out laterally in mudstone and shale within the Masuk
Shale Member.

Widespread sandstones of the Muley Canyon-3 unit
mark a change in sedimentary processes of the region.
The prograding deltaic sequence gave way to a destruc-
tional deltaic phase, as fluvial-sediment influx decreased,
probably in response to abandonment of the main
distributary.

The Muley Canyon-3 unit forms a continuous sandstone
sheet across the quadrangle and surrounding areas. Len-
ticular, trough cross-bedded sandstone bodies, often
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FIGURE 16.—View west across Sweetwater Creek, in the NW Y4,
section 30, T. 31 S, R. 9 E, of fluvial channel of Muley Canyon-3
cut into Muley Canyon-2 coal.

scoured into the underlying carbonaceous zone, represent
distributary channels and distributary mouth bars.
Adjacent to and above the lenticular sandstones are
broad sandstone sheets that may be trough cross-bedded,
as seen at Stevens Narrows and south of Steele Butte, or
flat bedded, as seen along Blind Trail. Broad sands formed
during the destructional phase of deltaic sedimentation in
which marine processes reworked the sand into thin,
widespread deposits. Hubert and others (1972, p.
1663-64) described a similar broad, thin sandstone above
delta plain sediments in the Cody-Parkman Delta in
Wyoming and presented a similar interpretation. Heward
(1981, p. 249) reported thin, widespread sands are typical
of destructive deltaic deposits. They result from rapid
transgression caused by “limited sediment supply, and
‘compaction and subsidence of the underlying delta lobe.”

Masuk Shale Member. The Masuk Shale Member is
composed of mudstone, shale, and sandstone, which make
it distinctive from the Blue Gate Shale and Tununk Shale
Members of the Mancos Shale.

Hunt and others (1953, p. 85) described the Masuk
Shale as 183-244 m (600-800 ft) of irregularly bedded,
sandy gray shale, sandy carbonaceous shale, and sand-
stone. Their measured thickness is greater than that re-
ported by subsequent writers because they placed the
Muley Canyon Sandstone-Masuk Shale contact strati-
graphically lower, at the top of the Muley Canyon carbo-
naceous zone.

Peterson and others (1980, p. 162) placed the base of
the Masuk Shale stratigraphically higher and stated the
unit is 186-201 m (612-660 ft) thick, on the basis of sever-
al drill holes and measured sections. They collected gas-
tropods, pelecypods, garpike scales, turtle-shell frag-
ments, and crocodilian teeth, which indicate a fresh- to
brackish-water environment. Fossils indicate an early

Campanian to early late Campanian age for the Masuk
Shale.

A section of the Masuk Shale Member, measured near
Blind Trail, on the west side of the butte in section 26, T.
31 S, R. 8 E, is 216 m thick (fig. 17), and a section mea-
sured on Steele Butte is 204 m thick. Total thickness of the
member is consistent; although thicknesses of informal
map units are extremely variable over small distances.

The Masuk Shale Member was divided into three infor-
mal map units (fig. 17) on the basis of lithologic relations.
These units are Masuk Shale-1: interbedded mudstone,
discontinuous sandstone, and subordinate shale; Masuk
Shale-2: shale with minor sandstone and mudstone; Masuk
Shale-3: interbedded sandstone, mudstone, and shale. Ma-
suk Shale-2 of Smith (1983) corresponds approximately to
Masuk Shale-2 and 3 of this report.

Masuk Shale-1. Widely exposed from Wildcat Mesa,
in the northwest corner, to the southeast corner of the
quadrangle is Masuk Shale-1. The rocks are eroded back
and form a bench above the Muley Canyon-3 bench.
Sandstone beds interfinger laterally with mudstone or
shale throughout the map unit. It ranges from 50 m thick
at Blind Trail to 53 m thick on Steele Butte.

Sandstone beds are commonly 2-3 m thick, although
one bed at Blind Trail measured 16 m thick. Sandstone is
yellowish gray to grayish orange and contains 65%-90%
very fine to fine-grained quartz, 5%-10% calcite cement,
25%-30% iron oxide, minor silica cement, and gypsum.
These rocks form trough cross-bedded lenses and are often
channeled into underlying mudstone. Bidirectional trough
cross-beds were seen in the sandstone in the NW 4, sec-
tion 29, T. 315, R.9 E.

Mudstone comprises approximately half of the lower
unit. It varies from olive gray to medium gray and carbo-
naceous to silty with minor gypsum stringers, coaly mate-
rial, and macerated plant debris.

Contact with the Masuk Shale-2 unit is gradational and

. was placed at the base of the horizon where shale begins

to predominate over sandstone and mudstone.

Mudstone is the dominant lithology of the unit. Postma
(1967, p. 177) reported fine muds are the primary sedi-
ments of estuarine environments, forming on shoals and
tidal flats that are emergent during low tides. Mud is de-
posited by clay flocculation in brackish waters in the ab-
sence of waves due to a seaward barrier. Lenticular sand-
stones of the Masuk Shale-1 unit were deposited in fluvial
channels of the estuarine environment. Bidirectional
trough cross-beds indicate tidal influence on the channels.

Mudstone and sandstone of the Masuk Shale-1 unit rep-
resent deposition in an interdeltaic, estuarine environ-
ment. Fossils collected by Peterson and others (1980) in-
dicate fresh- to brackish-water environments. These data
correspond to the description of the back-barrier estua-
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FIGURE 17.—Stratigraphic column of Masuk Shale section
measured east of Blind Trail, showing map unit divisions. Up-
per contact of the Muley Canyon Sandstone placed at top of
unit 32 by Doelling; at top of unit 33 by Law, Peterson.

rine environment of the Snuggedy Swamp of South Caro-
lina, which includes tidal-flat-salt-marsh complexes to
freshwater swamps (Staub and Cohen 1979, p. 501).

Masuk Shale-2. Masuk Shale-2 is exposed along the
slope of Tarantula Mesa and nearby buttes. It is extremely
variable in thickness, ranging from 66 m at Steele Butte to
128 m near Blind Trail. Almost three-quarters of the unit
is olive gray to medium gray, carbonaceous shale. Shale is
irregularly laminated and weathers to highly dissected
slopes.

Sandstone is pale yellowish orange to pale yellowish
brown and contains 75%-85% quartz, 5%-10% calcite ce-
ment, and 5%-15% gypsum. Beds range from very thin to
massive and form ledges that protect shale slopes.

Contact with the overlying Masuk Shale-3 unit is
gradational, and the boundary was placed at the base of
the interval where sandstone becomes dominant.

This unit represents continued deposition in the estua-
rine environment similar to the Masuk Shale-1 unit. Shale
has replaced mudstone as the dominant lithology, and the
sandstone channels are smaller and less abundant than in
the lower unit. These changes indicate a decrease in sand
influx irito the area.

Masuk Shale-3. Masuk Shale-3 crops out as steep
slopes below massive cliffs of Tarantula Mesa Sandstone,
along the wall of Tarantula Mesa and nearby buttes.

Pale yellowish orange to yellowish gray sandstone com-
prises most of the unit. Sandstone contains 85%-95% very
fine to fine-grained quartz, cemented by calcite and silica.
Beds are medium to massive and pinch out laterally into
surrounding mudstone or shale.

Contact with the Tarantula Mesa Sandstone is con-
formable. The boundary was placed at the top of inter-
bedded sandstone and shale of Masuk Shale-3 and the base
of the massive cliff-forming Tarantula Mesa Sandstone.

The Masuk Shale-3 unit represents a continuation of
the interdeltaic sedimentation, with an increase of fluvial
influence compared to the Masuk Shale-2 unit. These de-
posits grade into the overlying braided stream deposits of
the Tarantula Mesa Sandstone.

Tarantula Mesa Sandstone

The Mesaverde Formation of previous writers is called
the Tarantula Mesa Sandstone in this report, following the
definition of Smith (1983) for exposures on Tarantula
Mesa, in the SE Y%, section 35, T. 32 S, R. 9 E. Peterson
and Ryder (1975, p. 185) suggested the formation in the
Henry Mountains should be renamed because it correlates
with only part of the Mesaverde Group of southwestern
Colorado, and it is lithologically different from the type
section.

Doelling (1975, p. 48) described the formation as up to
122 m (400 ft) of sandstone with occasional platy sand-
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stone or mudstone partings. Peterson and Ryder (1975, p.
180) dated the Tarantula Mesa Sandstone as early late
Campanian on the basis of regional correlations.

The formation caps Tarantula Mesa and several buttes
from Tarantula Mesa to Steele Butte. A partial section
was measured on the east side of Tarantula Mesa, north of
the road, in the southern half of section 23, T. 32 S, R. 9 E.
It consists of 85 m of sandstone and conglomeratic
sandstone.

The formation was divided into two informal map units
(fig. 18), with the boundary between the units placed at
the lowest occurrence of conglomeratic sandstone. Where
steep cliffs made an area inaccessible, the contact was
mapped at the top of the massive cliffs of Tarantula Mesa-
1 and the base of the steplike ledges of Tarantula Mesa-2
(fig. 19). On several buttes, where the ledges are not ap-
parent, the formation was mapped as undifferentiated Ta-
rantula Mesa Sandstone.

Tarantula Mesa-1. Seventy meters of pale yellowish
orange to light gray sandstone, Tarantula Mesa-1 forms
massive cliffs. Pale yellowish orange sandstone at the base
is composed of 80%-85% very fine grained quartz, ce-
mented by calcite, with minor iron oxide. Seventy percent
of the unit is light gray sandstone composed of 90% very
fine grained quartz, with silica cement, and minor chert.
Sandstone is medium to very thick bedded, contains
trough cross-beds, and is laterally discontinuous (fig. 20).
Peterson and others (1980, p. 163) interpreted the lower
part of the Tarantula Mesa Sandstone as fluvial deposits.

Tarantula Mesa-2.  The upper surface of the Taran-
tula Mesa Sandstone is erosional across most of the area. A
partial section of the upper unit included 15 m of sand-
stone and conglomeratic sandstone. Conglomeratic sand-
stone in the lower 4 m is light gray, with chert and quartz-
ite pebbles, in a very fine grained quartz sand matrix.
Light gray sandstone similar to the upper part of Taran-
tula Mesa-1 overlies the conglomeratic sandstone. Taran-
tula Mesa-2 beds form a series of ledges eroded back from
the underlying massive cliffs of the lower unit. This unit
represents deposition in a fluvial, braided-stream complex
similar to the Tarantula Mesa-1 unit.

“Beds on Tarantula Mesa™

The beds on Tarantula Mesa make up an informal unit
first described by Peterson and Ryder (1975, p. 180-81).
They occur in the central part of Tarantula Mesa as low
mounds of interbedded mudstone and sandstone covered
by chert gravel.

A section measured by Smith (1983) consists of 18 m of
interbedded silty, carbonaceous, bentonitic mudstone and

very fine to fine-grained, yellowish gray sandstone. The
unit forms a ledge-and-slope topography.

Peterson and Ryder (1975, p. 180) stated that no age-
diagnostic fossils have been found but suggested the unit is
early late Campanian in age on the basis of regional corre-
lation. Contact with the Tarantula Mesa Sandstone is con-
formable, but usually is covered by gravel.
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FIGURE 18.—Stratigraphic column of Tarantula Mesa Sand-
stone measured on the east side of Tarantula Mesa, showing
map unit divisions.
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FIGURE 19.—Massive cliffs of Tarantula Mesa-1 unit are over-
lain by steplike ledges of Tarantula Mesa-2 unii.

TERTIARY SYSTEM
Diorite Porphyry Intrusions

Armstrong (1969, p. 2984) reported the Henry Moun-
tains igneous intrusions to be 44 to 48 m.y. old on the basis
of K-Ar dating of the diorite porphyry (whole rock analy-
ses) and hornblende. Recent radiometric dates for similar
laccolithic bodies on the Colorado Plateau, such as the
Ute Mountains, range from 20-25 m.y. (Rowley and
others 1978, p. 51-55) to 64-72 m.y. (Cunningham and
others 1977, p. 5) and suggest possible discrepancy in dat-
ing the Henry Mountains intrusions. ' ‘

Diorite porphyry intrusions are exposed in four loca-
tions in the northeast corner of the quadrangle, Intrusions
penetrated the stratigraphic units up into the Tununk
Shale Member and are bordered by normal faults, low-
angle reverse faults, and folded, baked country rocks. The
largest exposed igneous body is located south of Dugout
Creek, in the NE 14, section 26, T. 31 S, R. 9 E. It is ap-
proximately 350 m long by 150 m wide. A well on Apple
Brush Flat, in the NW %, section 22, T. 31 S, R. 9 E,
drilled through 60 m of igneous rock. Additional igneous
intrusions and thicker bodies probably occur closer to the
stocklike intiusion of North Summit Ridge, approx-
imately 5.6 km east of the quadrangle (Affleck and Hunt
1980, p. 111, 112). '

Intrusive bodies associated with the Mount Ellen stock
are diorite porphyry with phenocrysts of oligoclase, horn-
blende, and magnetite (Hunt and others 1953, p. 152). Ig-
neous intrusions weather to cliffs and ledges.

QUATERNARY SYSTEM

Five types of Quaternary deposits were mapped in the
Steele Butte Quadrangle. They are pediment gravel, allu-
vial terrace gravel, eolian sand and loess, colluvium, and
stream alluvium.
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FIGURE 20.—Trough cross-b
tula Mesa Sandstone.

edded, sandstone lenses in Taran-

Pediment Gravel

A veneer of gravel occurs above pediments in several
isolated outcrops in the eastern half of the quadrangle.
Gravel caps a surface cut across Masuk Shale and Muley
Canyon Sandstone north of Dry Wash, in sections 8, 9,
and 10, T. 31 S, R. 9 E. East of Mud Spring, in sections 14
and 23 and the SE %, section 15, T. 31 S, R. 9 E, the gravel
rests across the Ferron Sandstone, Tununk Shale, and Da-
kota Sandstone. Pediment gravel caps the Muley Canyon
Sandstone and Blue Gate Shale south of Sage Flat, in sec-
tions 1,2,and 11, T.32S, R. 9 E. o

Pediment gravel is composed of cobbles and boulders of
diorite porphyry, from the Mount Ellen intrusions, in a
matrix of very fine to fine-grained, light brown sand.

Gravel deposits, with an eastern source from the Mount
Ellen intrusions, cap beheaded pediments. They are topo-
graphically higher than surrounding alluvial terrace
gravels, having been deposited on a former cut surface.
Erosion of the surrounding area cut through and left the
isolated high remnants. Deposition of alluvial gravel con-
tinued across the lower level.

Alluvial Terrace Gravel

Alluvial terrace gravel blankets most of the north-
eastern third of the quadrangle and forms isolated depos-
its in the south central quarter. Thickness ranges from
over 15 m near the foot of Mount Ellen to a thin veneer
along the western border of the gravel cover.

Deposits formed where lobes of alluvium from Cedar
Creek, Dugout Creek, and South Creek coalesced. Isolat-
ed gravel terraces in the south were deposited by the
stream that flowed through Stevens Narrows. Several of
the southern deposits contain debris derived from the Ma-
suk Shale and Tarantula Mesa Sandstone cliffs on Taran-
tula Mesa and differ from deposits elsewhere that are
dominated by igneous debris.




GEOLOGY OF THE STEELE BUTTE QUADRANGLE 159

Stream Alluvium

After deposition of the alluvial gravel, streams in the
area again entrenched. Alluvium of fine sand to cobbles in
diorite porphyry has accumulated in and along major
creeks and washes in the area.

Eolian Sand and Loess

Several isolated areas of eolian deposits were mapped
on Tarantula Mesa. These sediments are composed of pale
red silt to medium-grained sand. They appear as broad,
flat sandy areas with limited vegetation.

Colluvium

Colluvium has developed at the base of several steep
slopes of igneous and sedimentary rocks in the northeast
corner of the quadrangle. These deposits are uncon-
solidated debris composed of angular blocks of cobbles
and boulders with lesser fine material.

STRUCTURAL GEOLOGY
GENERAL STATEMENT

The Steele Butte Quadrangle lies within the Henry
Mountains structural basin, which is a north-south-trend-
ing asymmetric syncline with a shallow east limb and
steep west limb. The nearby Waterpocket Fold of the
Capitol Reef area forms the west limb of the basin. Hunt
(1953, p. 90) suggested the Henry Mountains structural
basin formed between Late Cretaceous and early Eocene,
and igneous bodies intruded the east limb of the syncline
during Eocene time (Armstrong 1969, p. 2084).

Two major structural types are recognized in the quad-
rangle: (1) broad, shallow features related to the Henry
Mountains basin and (2) large- to small-scale folds and
faults associated with igneous intrusions. Quaternary to-
reva-block slides are minor structural features in the
quadrangle.

A structural contour map (fig. 21), on the top of the
Muley Canyon-1 sandstone, shows the gentle character of
the Henry Mountains syncline and the somewhat more
abrupt folds associated with igneous intrusions. Faults
have only minor displacements and are not apparent on
the contour map because of the interval.

HENRY MOUNTAINS STRUCTURAL BASIN

The major structure of the basin is the Henry Moun-
tains syncline. Axis of the syncline extends north-south
near the western margin of the quadrangle and plunges
southward under Tarantula Mesa. Beds in the western half
of the quadrangle, which are unaffected by the intrusions,
dip gently up to 4° into the syncline.

STRUCTURES ASSOCIATED WITH INTRUSIVE
BODIES

Igneous intrusions associated with the Mount Ellen
stock have deformed sedimentary rocks in the eastern half
of the quadrangle. They show regional upwarping and dip
7°-10° W near the center of the quadrangle but 15°-25°
W along the Muley Creek Sandstone cuesta and areas to
the east (fig. 21).

Hunt and others (1953, p. 90) described laccoliths in the
Henry Mountains area as tongue-shaped intrusions that
deformed the overlying sedimentary rocks into anticlinal
noses that opened toward the stock. The structural con-
tour map shows several west-plunging anticlines which
correspond with projections of laccolithic bodies to the
east.

Igneous intrusions have upwarped strata from the En-
trada Sandstone through the Ferron Sandstone in the
northeast corner of the quadrangle, from 1.6 km south of
Dugout Creek to the middle of section 11, T. 31 S, R. 9 E.

Several normal faults and one low-angle reverse fault
were mapped in the area. They resulted from upwarp
around the laccolithic bodies. Normal faults are generally
traceable for less than 2 km and have average vertical dis-
placements of 15-25 m. Maximum displacement of 60-75
m was observed on one fault in the NW 14, section 14, T.
318, R. 9 E. The low-angle reverse fault in section 25, T.
31 S, R. 9 E, is within the Salt Wash Member and has ap-
proximately 40 m displacement.

TOREVA-BLOCK SLIDES

Three toreva-block slides were mapped in the quad-
rangle. Two blocks, approximately 250 m wide by 210 m
high, occur near the top of the cuesta northeast of Stevens
Narrows, in the center of section 14, T. 32 S, R. 9 E. The
blocks are Blue Gate Shale capped by Muley Canyon
Sandstone and have slid 20-35 m downslope. A similar to-
reva block composed of the upper member of the Cedar
Mountain Formation capped by Dakota Sandstone was
mapped north of Dugout Creek, in the west central part
of section 23, T. 31 S, R. 9 E. The block is approximately
150 m wide by 50 m high and has slid 10-15 m downslope.

ECONOMIC GEOLOGY
COAL

Coal is a major potential economic resource in the Hen-
ry Mountains basin. It occurs widely in the Muley Canyon
and Ferron Members and locally in the Dakota Sandstone
(Doelling and Graham 1972, p. 117).

Coal in the Muley Canyon Member is exposed in the
Steele Butte Quadrangle, but Ferron coal is covered by
thick gravel deposits near Dugout Creek and increasingly
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thick overburden to the west as beds dip into the Henry
Mountains syncline. No coal was observed in the Dakota
Sandstone in the quadrangle, but coal does occur in beds
exposed along the Waterpocket Fold, to the west.

Muley Canyon coal is exposed along the banks of
Sweetwater Creek and Dugout Creek, in the northwest
corner of the map area and in the belt of cuestas on the
east side of the quadrangle. Along the cuestas, the coal
thickens from Dry Wash to South Creek; then, 2 km south
of South Creek to the corner of the quadrangle, the coal is
exposed as discontinuous outcrops.

Coal outcrops in the northwest quarter of the quad-
rangle contain 1-4 discontinuous seams that total 0.3-3.0
m thick (fig. 13). The maximum coal reported in the
northwest part of the area is 6.5 m in a test well drilled
east of Blind Trail, in the SW 4, section 23, T. 31 S, R. 8

E.
In the northeastern quarter of the quadrangle, coal in-

creases from 0.2 m thick at Dry Wash to 2.1 m thick in
South Creek. South of Dry Wash, in the NW 1, section
16, T. 31 S, R. 9 E, 0.2 m of coal is overlain by sandstone.
Near Dave Teeples Spring, 0.4 m of coal at the base is
overlain by sandstone capped by carbonaceous shale and
siltstone. Along South Creek, carbonaceous shale and
siltstone grade to 1.2 m of coal which overlies 10.5 m of
sandstone with 0.9 m of coal at the base.

Coal is exposed in a belt of discontinuous outcrops from
2 km south of South Creek, in the NE %, section 33, T. 31
S, R. 9 E, to the southeast corner of the quadrangle. Hunt
and others (1953, p. 84) and Doelling and Graham (1972,
p. 117) noted the discontinuous coal beds south of Steele
Butte. Law (1980, p. 329) reported southward thinning of
the coal in outcrops immediately west of the quadrangle,
similar to thinning of the coal reported in outcrops in the
southeastern corner of the quadrangle. A well located in
the NE %, NE %, section 17, T. 32 S, R. 9 E, between the
eastern and western outcrops, drilled through the Muley
Canyon Sandstone but penetrated no coal. Combined sur-
face and subsurface evidence indicates an area of thin to
discontinuous coal in the southern half of the quadrangle
(fig. 22).

A coal isopach map (fig. 22) was constructed from 27
measured coal sections, plus data from previous reports
(Doelling and Graham 1972, Law 1980). The map shows
three areas of coal accumulation greater than 1.21 m (4 ft)
thick. These are (1) from Wildcat Mesa to Coleman Hol-
low Wash, in the northern half of section 2, T. 32 S, R. 8
E, and northeast to Dugout Creek, in the SW 14, section 7,
T. 318, R. 9 E; (2) southwest from Dry Wash, NW Y%, sec-
tion 9, T. 31 S, R. 9 E, across Apple Brush Flat and South
Creek to Tarantula Mesa; and (3) in the vicinity of Steele
Butte and King Ranch. The map also shows the area of
discontinuous coal in the southern one-third of the
quadrangle.

Several features are associated with the discontinuous
coal outcrops south of South Creek.

1. Two coal seams are present in the northern outcrops,
but only the lower coal continues southward. Farther
south the lower coal is also cut out.

2. South of South Creek, large blocks (up to 0.3 m in di-
ameter) of ripped-up carbonaceous shale and coal oc-
cur in sandstone above the lower coal. Abundant
trough cross-beds in the Muley Canyon-3 sandstone in-
dicate they were deposited by an eastward-flowing
stream.

3. The Muley Canyon-3 sandstone is considerably thicker
(50 m) where the coal is cut out, than at Stevens Nar-
rows to the south (24 m) or to the northwest at Blind
Trail (17 m).

These data indicate that thinning and removal of coal are

due to erosion by streams that deposited the massive

Muley Canyon-3 sandstone.

Law (1980, p. 329) previously attributed the thin coal
to limited accumulation on the crest of the Teasdale Anti-
cline during Cretaceous time. He suggested that the
southeast-trending anticline formed in Late Jurassic time
and extended eastward through the quadrangle as a struc-
tural high feature limiting coal swamp development.
However, isopach and depositional patterns have strong
northeast trends indicating major northeast-flowing
streams were the major control on deposition and erosion
of the coals.

Muley Canyon coal has thin total overburden plus in-
terburden across much of the quadrangle. Cover is gener-
ally less than 45 m (150 ft) thick, with small areas up to 60
m (200 ft) thick. The area of thin overburden extends
north from near King Ranch to the northern boundary of
the quadrangle and is bounded on the south and southwest
by Tarantula Mesa and on the east by Steele Butte and the
coal outcrop.

Doelling (1975, p. 84, table 18) reported 75.5 million
short tons of estimated and inferred reserves of Muley
Canyon coal in the Stevens Mesa and Steele Butte Quad-
rangles. Coal is subbituminous A to high-volatile C bitu-
minous and contains 1.0% sulfur and 11,300 Btu/lb
(Hatch and others 1980, p. 339; Doelling and Graham
1972, p. 164, table 8). One mine was developed in the
Muley Canyon coal at Sweetwater Creek and another
along Dugout Creek in the 1940s (Doelling and Graham
1972, p. 165). The mines are now abandoned, but their en-
tries are located in the NW 1%, NW i, section 30, near
Sweetwater Creek, and in the SW 4, SW 14, section 7, T.
318, R. 8 E, near Dugout Creek.

Coal deposits in the northern half of the Steele Butte
Quadrangle are suitable for strip mining because of the
combination of appreciable coal and less than 45 m (150
ft) of overburden across much of the area. One deterrent
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to mining, however, is the remoteness of the area when
compared to coalfields in Emery and Carbon Counties.

PETROLEUM

The Henry Mountains region has not produced oil and
gas yet. Irwin and others (1980, p. 358) discussed the hy-
drocarbon potential of the area and reported that several
units, including the Moenkopi, Kaibab, White Rim, Ho-
naker Trail, and Paradox Formations, have had live oil
shows in tests around the basin but have not produced
within the basin.

A well by Webb Resources on Apple Brush Flat drilled
through the White Rim Sandstone and produced fresh wa-
ter from that formation. Another Webb Resources well on
Cave Flat, approximately 9 km southeast of the quad-
rangle, also drilled through the White Rim Sandstone and
produced fresh water. Recently, Exxon abandoned a well
in the NW Y, SE 1, section 24, T. 31 S, R. 9 E, after drill-
ing 2,454 m.

CONSTRUCTION MATERIALS

Roads that cross Mancos Shale become almost impas-
sable during wet weather. Quaternary terrace gravel de-
posits, in the northeast third of the quadrangle, are a
source of road metal. Deposits composed of diorite por-
phyry pebbles to boulders thin to the west. Most promis-
ing deposits are those on Apple Brush Flat near the foot of
the mountain. Gravel was excavated on Apple Brush Flat,
in the NE %, section 22, T. 31 S, R. 9 E, and provided ma-
terial for construction of large sections of road from Sandy
Creek to the Exxon well site. '

WATER RESOURCES

Water is a limited resource in the Steele Butte Quad-
rangle. Dugout Creek, South Creek, and Sweetwater
Creek are the only regularly flowing streams, but they
may dry up in sections of their courses in the late summer
months. They are fed from springs and melting snow on
Mount Ellen.

Only two significant springs are present in the quad-
rangle. Dave Teeples Spring, in the SW %4, section 22, T.
31S,R. 9 E, isa good supply of water, but water rights are
privately owned. Mud Spring, in the NE %, NW %, sec-
tion 15, T. 31 S, R. 9 E, is a minor, undependable source of
water. Several seeps in the northern half of the quad-
rangle provide negligible amounts of water.

SUMMARY

Sedimentary rocks exposed in the quadrangle were de-
posited in a variety of environments. The Jurassic Entrada

Sandstone, Curtis Formation, Summerville Formation,
and Morrison Formation represent interdeltaic-coastal,
shallow-marine, tidal-flat, fluvial, lacustrine, and ash-fall
deposits. The Lower Cretaceous Buckhorn Conglomerate
was formed by fluvial and eolian processes. Above the
Buckhorn Conglomerate, the upper member of the Cedar
Mountain Formation is composed of reworked Brushy Ba-
sin shales deposited in local basins.

Upper Cretaceous Dakota Sandstone and Mancos Shale
document a series of marine transgressions and regres-
sions. The Dakota Sandstone consists of fluvial deposits
overlain by beach and shallow-marine sediments. Contin-
ued transgression of the sea deposited marine shale of the
Tununk Shale Member. The prograding “Notom™ Delta
(Hill 1982) caused the sea to withdraw from the area and
deposited Ferron Sandstone sediments. This regression
was followed by a destructive deltaic phase and associated
marine transgression in which Blue Gate Shale deposits
similar to the Tununk Shale were formed. Prodelta shale
and transitional deltaic shale and sandstone comprise the
upper half of the Blue Gate Shale and mark another re-
gression of the sea in response to progradation of the
Muley Canyon Sandstone delta. The lower two-thirds of
the Muley Canyon Sandstone is composed of delta-front
sandstones overlain by delta-plain sediments. Fluvial
sandstones and transgressive sheet sandstones that form
the upper part of the Muley Canyon Sandstone mark the
end of the constructive deltaic phase. The Masuk Shale
was deposited in an interdeltaic-estuarine environment as
the main delta lobe shifted away from the area. The Ta-
rantula Mesa Sandstone is composed of fluvial, braided-
stream deposits and indicate the end of the transgressive-
regressive sequence.

Following deposition of the strata, deformation created
the Henry Mountains syncline during Late Cretaceous
and early Tertiary. Subsequent to inception of the syn-
cline, igneous activity produced the Henry Mountains in-
trusions. The structure contour map (fig. 21) dlsplays fea-
tures formed during these events.

Uplift and erosion have exposed the Jurassic, Cre-
taceous, and Tertiary rocks within the quadrangle and
produced five types of Quaternary deposits.

The processes which produced the Muley Canyon
Sandstone influenced coal distribution in the area, with
resulting economical accumulations of coal suitable for
strip mining. Figure 22 is a total coal isopach of the
quadrangle.

The appendix for this paper, manuscript pages 47-66,
are on file at the Department of Geology, Brigham Young
University, Provo, Utah 84602, where a copy may be
obtained.
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