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Three Creeks Caldera, Southern Pévant Range, Utah

THOMAS A. STEVEN
U.S. Geological Survey
Denver, Colorado 80225

ABSTRACT.—The Three Crecks Tuff Member of the Bullion Canyon Volcanics
had its source in an obscure subsidence structure (caldera) in the southern Pa-
vant Range, Utah. Subsidence apparently began after the lower part of the
member had been deposited and proceeded concurrently with erupcion of the

middle part of the member. A shallow sag, 5-8 km across and faulted along the

southeastern side, was produced; ash flows deposited within the subsiding block
are at least twice as thick as those deposited concurrently outside the block. The
fault scarp on the southeastern side of the caldera was extensively modified by
landsliding and erosion before renewed eruptions filled the depression to over-
flowing with ash flows identical in lithology with those deposited during earlier
Three Creeks eruptions. Minor subsidence along earlier structural trends accom-
panied the late Three Creeks erupdons.

Minor late resurgence reelevared the subsided block so thart units within the
caldera are now at approximately the same stratigraphic and structural levels as
equivalent rocks outside the caldera. Deformation accompanying the resusgence
was limited to caldera-fill rffs along the trend of the faulr zone bounding the
southeastern side of the caldera where the upper part of the Three Crecks Mem-
ber dips as much as 30° southeastward into the topographic wall of the caldera.
The resurgence may have taken place while some of the caldera-filling wffs
were still hot and plastic.

The broad, relatdvely diffuse subsidence that formed the Three Creeks cal-
dera may have resulted from episodic eruptions from a relatively deep magma
chamber, so that roof support was lost gradually, rather than catastrophically, as
in the case of many well-formed calderas. The size and shape of the magma
chamber may also have been factors contribucing to the mode of subsidence.

Introduction

An obscure subsidence structure related to eruptions of the
Three Creeks Tuff Member of the Bullion Canyon Volcanics
has been identified in the southern Pavant Range, Utah, along
the northern flank of the Marysvale volcanic field (fig. 1). The
Three Creeks Tuff Member is a single ash-flow tuff sheet whose
original volume probably was on the order of 100-200 kms, suf-
ficiently large to suggest that subsidence related to eruption
probably took place at its source (Smith 1960, p. 819). Thick-
ness and welding relations suggested, early in the course of
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field studies in the Marysvale area (Steven and others 1979),
that the sheet probably originated in the Clear Creek drainage
between the Tushar Mountains and the Pavant Range.

Geologic mapping by Callaghan and:Parker (1962) and by
Caskey and Shuey (1975) did not indicate any subsidence fea-
ture in the Clear Creek area, but subsequent careful mapping
has disclosed evidence of a largely buried caldera. The very ob-
scurity of this feature and the many bits of subtle evidence for
its existence are the main subjects discussed in this paper. Many
other seemingly homeless ash-flow tuff sheets may have been
derived from similarly obscure sources.

Regional Setting

The Three Creeks Tuff Member of the Bullion Canyon
Volcanics was erupted about 27 m.y. ago (Steven and others
1979) from a source along the northern flank of the Marysvale
volcanic field. At this time, a large stratovolcano centered in
the northern Tushar Mountains dominated the Marysvale field
(fig. 2); this volcano formed primarily before 30 m.y. ago, and
influenced the distribution of most later volcanic units. A large
volcanic dome of porphyritic quartz latite, in the southern Pa-
vant Range east of the Three Creeks source (fig. 2), fofmed a
barrier that blocked the spread of Three Creeks ash flows east-
ward along the northern flank of the Marysvale volcanic field.
Smaller flank volcanoes near present-day Cove Fort (fig. 2)
were largely covered by younger lava flows and ash-flow tuffs
beneath the Three Crecks Member (fig. 1) by the time the
Three Crecks was erupted. :

The Three Creeks Tuff Member thus was erupted onto an
irregular volcanic plain flanking the northern side of a major
stratovolcano. Incandescent ash was erupted episodically to
form many successive ash flows that spread widely except
where constrained by preexisting volcanoes. Figure 2 shows the
presently known distribution of the Three Creeks Tuff Mem-
ber. The unit is thick and densely welded all around the eroded
northern and northwestern peripheries shown, and the unit
clearly was emplaced well beyond the present area of distribu-
tion in these directions. The approximately 1,100 km? of Three
Crecks Tuff Member shown on figure 2 is probably only about
half the original extent of the unit. Assuming an average thick-
ness of 100 m (an order of magnitude figure only), about 100
kms of the Three Creeks Member still exists; the original vol-
ume may have been as much as twice this. This volume is-suf:
ficient to support an assumption that subsidence at the source
probably took place as a consequence of eruption (Smith 1960,
p- 819; Steven and Lipman 1976, p. 31), but that a large, well-
formed caldera need not have formed.

The Three Creeks Tuff Member was covered by a sequence
of lava flows and ash-flow tuffs, no more than 500 m thick,
erupted over an 8 m.y. span of time (fig. 1). Locally derived
lava flows of porphyritic quartz latite (fig. 1) formed a dis-
continuous cover over the Three ‘Creeks; these flows range
from a single viscous domal flow in the northwestern part of
figure 1, to several thinner flows in the southern part of the
map area. The low area between these lava accumulations was
widened and deepened by stream erosion before ash flows from
distant sources deposited tongues.of both the tuff of Albinus
Canyon and the 22-m.y.-old Osiris Tuff (Fleck and others
1975) in the valleys. Still younger deposits consist of the Joe
Lott Tuff Member of the Mount Belknap Volcanics, deposited
19 m.y. ago (Steven and others 1979, p. 25), and overlying flu-
viatile sediments of the Sevier River Formation with local inter-
layered basalt lava flows. The Joe Lott shows no thickening

along the Three Creeks caldera margin, and the Sevier River
Formation appears to have filled a stream valley.

The modern drainage, superimposed through a cover of
soft Sevier River Formation, shows no influence by the older
structures that it exhumes.

Three Creeks Tuff Member

As detailed by Steven and others (1979, p. 13-17), the
Three Creeks Tuff Member is a crystal-rich quartz-latite ash-
flow tuff consisting of about 50 percent phenocrysts in a varia-
bly welded matrix of devitrified glass shards and collapsed pum-
ice fragments. The phenocrysts consist typically of andesine (35
percent), amphibole (9 percent), biotite (3 percent), quartz (2
percent), and a percent or less each of sanidine and Fe-Ti
oxides. Apatite; sphene, and zircon comprise minor accessory
minerals. These percentages vary both laterally and vertically,
but not in any seemingly systematic manner.

The Three Crecks Tuff Member is a2 multiple-flow
compound-cooling unit. Near its source in-Clear Creek, cooling
and welding variations define a rude stratigraphy that, al-
though not recognized inl the outflow sheet remote from the
source area, is critical in establishing the history of subsidence
at the source.

The Jower part of the Three Crecks Tuff Member is géner-
ally densely welded, with minor less-welded partings. A thick-
ness of about 200 m of this densely welded rock is exposed in
the canyon of Clear Creck near the eastern border of figure 1,
and a somewhat thinner section is widely exposed in the head-
waters of Clear Creek, Three Creeks, and Polée Creek, west and
north of figure 1. The base is widely exposed along the western
and northern flanks of the Pavant Range (fig. 2), but nowhere
within the area of fig. 1. The lower densely welded rock grades
upward into 2 ledgy sequence of soft, slightly to moderately
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welded tuff containing some layers of more densely welded
tuff. Except for differences in welding, the lithology and
phenocryst content remain similar across the transition. The
middle sequence is 200 to 250 m thick in Clear Creek Canyon,
outside the subsided area, but is more than 500 m thick along
Three Creeks and Pole Creek within the caldera (fig. 3).

The upper part of the Three Crecks Tuff Member consists
of densely welded ash-flow tuff similar to that in the lower
part. It caps hills near the outer perimeter of the Clear Creek
drainage basin north and west of the area of figure 1, and
forms a band of densely welded tuff that extends diagonally
across the center of figure 1 adjacent to the topographic wall
on the Three Creeks caldera. To the north and west, the upper
part of the member appears to parallel layering in the lower and
middle parts, but near the center of figure 1 it abuts and
wedges out in depositional contact against these units on the
topographic wall of the caldera (fig. 4).

The topographic wall of the Three Creeks caldera is marked
locally by discontinuous zones of breccia, largely of talus and
landslide debris with predominant Three Creeks fragments and
minor mudflow breccia with fragments from mixed sources. A
subsidiary topographic wall about a kilometer inside the main
wall is exposed north of Clear Creck in the west central part of
figure 1, perhaps over the buried structural margin. This sub-
sidiary wall is marked by a prominent zone of breccia con-
sisting of locally derived talus and landslide debris in its lower
part, overlain in turn by rudely bedded mudflow deposits and
by typical ash-flow tuff deposits of the Three Creeks Tuff
Member.

The differentially welded layers of Three Creeks form a
broad downwarp whose ill-defined axis plunges gently south-
eastward across the north central part of figure 1. North of the
confluence of Pole and Three Creeks, the dips of compaction
foliation in the upper part of the Three Creeks Tuff Member
increase sharply to 30° south. The underlying layers in the
middle part of the member appear to dip about as steeply,
whereas the same layers forming the topographic wall of the
caldera just to the south are relatively flat lying (fig. 4). Figure
S is a sketch cross section showing the interpreted relations in

this area.

The topographic wall of the Three Creeks caldera cuts
sharply across the middle part of the member (figs. 4, 6, 7A)
and is sinuous in plan (fig. 1). The talus and landslide breccia .
form rude layers that tend to parallel the immediately under-
lying wall (figs. 6, 7A, 7B), requiring subaerial accumulation
between episodes of pyroclastic eruption. In one place where
the actual wall was exposed (fig. 8), the wall is strikingly
grooved, probably because of grinding along the sole of a land-
slide. The breccias are especially well displayed along the topo-
graphic wall west and south of the confluence of Fish and
Clear Creeks where they abruptly truncate the flat-lying ledges
of the middle part of the Three Crecks Member. In the area il-
lustrated by figure 7, a spoon-shaped mass of the upper part of
the member is plastered against the middle part of the member
east of Fish Creek, and the intervening talus breccias stand in
cliff exposures.

. FIGURE 3.—View looking west across Pole Creek (see fig. 1) into the subsided block of the Three Creeks caldera. Tvy, volcanic rocks younger than the Three Crecks

Tuff Member; Tbtm, middle part of the Three Creeks Tuff Member.
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Evolution of the Three Creeks Caldera

Stratigraphic and structural relations in the Clear Creek
drainage basin indicate an extended sequence of events that
took place in the source area during and shortly after eruption
of the Three Crecks Tuff Member. Early eruptions spread hot
ash in a rapid sequence of ash flows that welded into a dense
sheet showing only local evidence of compound cooling. With
time, the eruptions became more episodic, and perhaps the
erupted ash was somewhat cooler so that the middle part of the
member accumulated as a sequence of distinct layers with well-
defined partial to complete cooling breaks between them (figs.
3, 4).

Broad subsidence may have begun in the source area dur-
ing the earlier and hotter eruptions, but the actual beginning
has not been documented. Subsidence was clearly under way
during accumulation of the softer and more-layered middle part
of the member, which is more than twice as thick within as it
is outside the subsided area. Subsidence formed a broad down-
wasp, faulted along the southeastern side, in the Three Creeks-
Pole Creek area. The fault scarp exposed chiefly the softer tuffs
in the middle part of the Three Creeks Tuff Member, and land-
sliding and erosion of these weak rocks resulted in a sinuous
topographic wall that flared southeastward from the faulted
margin of the subsided block. This topographic wall was partly
veneered by talus and landslide debris and local mudflow depos-
its (figs. 6, 7A, 7B), whose rude layering generally parallels the
underlying wall. These steeply dipping fragmental units have

little or no interlayered primary pyroclastic material, and appar-
ently were deposited during an extended period of volcanic
quiescence during which the caldera scarp was extensively mod-
ified by slumping and erosion.

Renewed eruptions from the Three Creeks magma chamber
again spread hot ash flows across the source area, where they
were trapped against the older topographic wall on the south,

Topographic wall

S <— Structural margin

FIGURE 5.-Interpreted relations along the topographic wall of the Three Creeks
caldera. L, M, and U represent lower, middle, and upper parts of the
Three Creeks Tuff Member of the Bullion Canyon Volcanics. Arrows in-
dicate direction and relative amount of subsidence (S) followed by resur-

gence (R).

FIGURE 4.—View looking west across Pole Creek (see fig. 1) at the ropographic wall of the Three Créeks caldera. Tvy, volcanic rocks younger than the Three Creeks
Tuff Member; Tbru, upper part, and Thtm, middle part of the Three Creeks Tuff Member.
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FIGURE 6.—Talus-landslide breccia on the top
shown in figure 1.

but spread more widely to the north. These ash flows were suf-
ficiently hot to weld into a dense sheet containing relatively
few less-welded partings. Some additional subsidence took place
concurrently with these eruptions so that a subsidiary scarp
within the upper part of the member formed along the reac-
tivated fault; talus, landslide, and mudflow debris accumulated
along this new scarp, only to be covered by more ash flows of
the same type.

Shortly after the final Three Creeks eruptions ceased, and
possibly while some of the upper part of the member was still
hot and plastic, part of the subsided block was resurgently up-
lifted by reversed movement on the buried fault (fig. 5). Uplift
was largely in the Pole Creck-Three Creeks area, where the
densely welded rocks in the upper part of the member dip
steeply against flat-lying rocks of the topographic wall of the
caldera (fig. 4). The ulting was confined to caldera-fill rocks,
which virtually requires that they were still plastic so that the
soft but cool layers in the outer wall were not deformed in any
way.

Resurgence was only sufficient to lift the soft middle part
of the member within the caldera to a structural position ap-
proximately equivalent to that of the same rocks outside the
caldera. Subsequent erosion has removed most of the hard up-
per part of the member, leaving only an elongate mass with
triangular cross section along the caldera margin. Thus, resur-
gence almost exactly erased the effects of earlier subsidence in

ographic wall of the Three Creeks caldera. Thm, middle part of the Three Creeks Tuff Member. Location of photo

this area, and were it not for aberrant relations along the cal-
dera boundary, would have obscured most of the evidence that
subsidence ever took place.

Subsequent erosion cut stream channels along the earlier
caldera boundary (fig. 4), and left an elongate ridge of densely
welded tuff in the upper part of the Three Creeks Member that
protruded up into younger lava flows and ash-flow tuff sheets
(fig. 1). For the most part, however, the flat-lying younger
rocks show virtually no evidence that they cover a caldera
marking the source area of an important ash-flow tuff unit.

Comparisons

Why do some ash-flow eruptions of moderate volume re-
sult in well-formed calderas with complex histories of sub-
sidence and filling, whereas others result only in obscure faule-
ed downwarps like the Three Creeks caldera? This question is
especially pertinent in the Marysvale volcanic field, where the
large well-formed Mount Belknap caldera (Cunningham and
Steven 1979) subsided in response to eruption of the Joe Lott
Tuff Member of the Mount Belknap Volcanics—a somewhat
less-voluminous but still comparable unit to the Three Creeks
Tuff Member. Noting that the composition of the Joe Lott
rocks closely approaches the Q-Or-Ab-H,O system of Tuttle
and Bowen (1958), Cunningham and Steven (1979, p. 32) cal-
culated a water pressure of 800 200 bars, which corresponds
to a lithostatic load generated by 3-4 km of cover over the



6 T. A. STEVEN

FIGURE 7.—Broad view (A) and detail (B) of ralus breccia along the topographic wall

of the Three Creeks caldera near Fish Creek (see fig. 1), Tbtu, upper part, and
Tbtm, middle part of the Three Creeks Tuff Member.

FIGURE 8.—-Grooves (see arrows) on the topographic wall of the Three Creeks caldera. Tbtm, middle part of the Three Crecks Tuff Member. Location of photo
shown in figure 1.
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FIGURE 9.—Temary diagram showing high-pressure and low-pressure fields for
Oligocene ash-flow tuffs and postcoliapse lavas in the San Juan Moun-
uins, Colorado (modified from Lipman and others 1978, fig. 4). Position
of sample M 90 (x) of the Three Creeks Tuff Member of the Bullion
Canyon Volcanics shown with respect to these fields.

magma chamber. The intricate response of the Mount Belknap
caldera to eruption of the Joe Lott Tuff Member seems a natu-
ral result of this shallow depth of cover.

The magma chamber beneath the Three Creeks caldera
probably was much deeper than that under the Mount Belknap
caldera, so that only broad subsidence of a relatively stronger
cover could take place. This suggestion has some support in
the lithology and phenocryst mineralogy of the Three Creeks
Tuff Member, which closely resembles the Fish Canyon Tuff in
the San Juan Mountains of Colorado (Steven and Ratté 1965,
p. 18). Lipman and others (1978, p. 63-66) interpret the Fish
Canyon as belonging to an assemblage of crystal-rich quartz la-
titic ash-flow tuffs whose phenocrysts crystallized in high-pres-
sure environments considerably below shallow subcaldera levels.
As shown on an Ab-Or-Q ternary diagram (fig. 9), a sample
(M90) of the Three Creeks Tuff Member plots well within the
high-pressure field defined by San Juan rocks. If these pheno-
crysts were near equilibrium with the enclosing melt at the
time of eruption, they presumably should have come from a
relatively deep magma chamber. Present data are too in-
complete, however, to determine the extent to which equilib-
rium had been maintained until the time of eruption.

The time span of eruptions also may have had significant
influence on the amount and character of subsidence. The lay-
ered, compound-cooling characteristics of the middle part of
the Three Creeks Tuff Member suggest that intermittent erup-
tions extended over a significant period of time so that related
subsidence probably was gradual rather than catastrophic. In
addition, the size and shape of the magma chamber could have
been important factors (Cunningham and Steven 1979), but
the significance of these factors is difficult to evaluate.

In broad perspective, the Mount Belknap and Three Crecks
calderas seem to mark widely separated points on what is prob-
ably a continuum of subsidence types, in which depth of mag-
ma chamber is only one of many interactive factors. As obscure
as the Three Creeks caldera is, it is unlikely to represent an end
member in this series. Subsidence so broad and diffuse as to be
virtually undetectable in all but the most ideal circumstances
seems a logical projection. Recognition of such obscure features
in poorly exposed or structurally complex areas would be espe-
cially difficult. Had not the southern side of the subsided block
broken to form a topographic scarp, it is possible that the
Three Creeks caldera would not have been recognized, even in
an area as well exposed as the Clear Creek drainage basin.
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