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A New Large Theropod Dinosaur from the Upper Jurassic of Colorado

PETER M. GALTON! AND JAMES A. JENSEN?
‘Department of Biology, University of Bridgeport, Bridgepors, Conn. 06602
2Egrth Science Museum, Brigham Young University, Provo, Utah 84602

ABSTRACT.—A preliminary diagnosis is given for Torvosaurus tanneri n.g. et sp.
(Carnosauria: Megalosauridae), a large theropod dinosaur from the Morrison
Formation (Upper Jurassic) of western Colorado. The form of the- forelimb
(massive straight humerus, short ulna, shorr first phalanx of digic I} and pelvic
girdle (no emargination ventrally of subacetabular part of pubis and ischium so
pelvis has an extensive ventromedial symphysis) is extremely conservarive for a
carnosaur. Torvosaurus is more similar to carnosaurs from the Middle Jurassic of
Europe than it is to the other Morrison camosaurs. Stokesosaurus Madsen is a
valid genus of Morrison theropod rather than a junior synonym of Liosuchus
Huene.

INTRODUCTION

During the last six years the junior author has been collect-
ing fossil bones of large theropod dinosaurs from a quarry in
the Upper or Brushy Basin Member of the Morrison Formation
(Upper Jurassic) at Dry Mesa in Montrose County, western
Colorado. The horizon is a fine- to coarse-grained lenticular
sandstone in the upper part of the Morrison Formation (Upper
Jurassic, upper Kimmeridgian at base of Tithonian), approx-
imately 30-45 m below the base of the overlying Cedar Moun-
tain Formation of Lower Cretaceous age. Disarticulated and
scattered remains of vertebrates of all sizes are represented,
ranging from an indeterminate caudal vertebra 7 mm long to a
sauropod cervical vertebra more than 1.3 m in length. Included
in this random assortment are several kinds of ornithopods,
large theropods, and sauropods, most of which appear to repre-
sent new species. The fossil remains display a complete range of
stream abrasion from perfect, unabraded bones to bone chips
and smoothly rounded bone-pebbles, all of which are size sort-
ed. One result of the sorting is the concentration of small,
lightweight debris in pockets in restricted horizontal zones. It
is here that delicate fragments, including those of prerosaurs
(Jensen and Ostrom 1977) and one that is possibly avian (Sci-
ence News 1977), are preserved.

Comparisons of many of the theropod bones with those of
the large- and medium-sized Morrison theropods described to
date—the well-known Allosaurus fragilis (sce Gilmore 1920,
Madsen 19762; often known as Antrodemus valens) and Cerato-
saurus nasicornis (see Gilmore 1920) plus the pelvic elements of
Stokesosaurus clevelandi Madsen (1974) and Marshosaurus bicente-
simus Madsen (1976b)~—show that a new taxon of large thero-
pod is represented. The purpose of this paper is to provide a
preliminary diagnosis of this taxon, based on the material pre-
pared to date, and to give a description of the forelimb and pel-
vic girdle. A description of the axial skeleton and hind limb is
being prepared. This new theropod is listed as a new genus of
the family Megalosauridae in tabulations of the Morrison dino-
saur fauna given by Galton (1977a,b).
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SYSTEMATIC SECTION

CLASS  REPTILIA
ORDER  SAURISCHIA
SUBORDER  THEROPODA
INFRAORDER  CARNOSAURIA
Family =~ Megalosauridae

Torvosaurus n. gen.

Type species: Torvosaurus tanneri n. sp.

Etymology: Latin torvus, savage, cruel, wild; Greek sauros, liz-
ard. _

Distribution: Known only from the Upper Jurassic of Colo-
rado.

Diagnosis: Same as for species, given below.

Torvesaurus tanneri n. sp.

Holotype: BYU 2002*, left and right long bones of forelimb.

Occurrence: The specimen was collected by J. A. Jensen from
near the bottom of the Upper or Brushy Basin Member of the
Morrison Formation (Upper Jurassic) at the Dry Mesa Quarry,
sec. 23, T.50 N, R.14 W, Montrose County, western Colorado.

Hypodigm: The holotype and the following paratypes: BYU
2003, left dentary; BYU 2004, cervical vertebrae 3, 4, and 5;
BYU 2005, cervical vertebra 7; BYU 2006-2010, dorsal ver-
tebrae 5, 7, 10, and 12; BYU 2010-2012, left metacarpals I, II,
and III; BYU 2013, right ilium; BYU 2014, left and right
pubes; BYU 2015, right ischium; BYU 2016, right tibia, fibula,
astragalus, and calcaneum; BYU 2017, right tibia; BYU 2018,
left first phalanx of digit I of manus.

Etymology: Named in honor of N. Eldon Tanner, first
counselor in the First Presidency of The Church of Jesus Christ
of Latter-day Saints.

Diagnosis: A large and heavily built theropod with a total
body length up to about 10 m. Humerus relatively straight and
massive with a strongly indented head, large deltopectoral crest,

*Institutional names cited in this paper have been abbreviated as follows: BYU, Brigham Young University, Vertebrate Paleontology Research Laboratory; OUM, Oxford University Museum, England; UT,

University of Tubingen, Germany; YPM, Yale Peabody Museum, New Haven, Conn.



2 P. M. GALTON AND J. A. JENSEN

FIGURE 1.—Torvosaurus tanneri n. gen. et sp., forelimb X0.20. A-J, holotype BYU 2002, left forelimb, A~F, humerus and G-L, radius and ulna in anterior (A,G),
lateral (B,H), posterior (C,1), medial (DJ), proximal (F,L) and distal (E,K) views; M, referred specimen BYU 2020, ungual phalanx of digit L. d, deltopec-
toral crest; £, flexor tendon attachment area; h, humeroradialis artachment area; o, olecranon process; r, radius; u, ulna.
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and a broad distal end with a large squarish radial condyle, a
small rounded ulnar condyle, and a large ulnar epicondyle; the
ratios of maximum length of humerus to the maximum prox-
imal and distal widchs are 2.2 and 2.6, respectively; forearm
short with ratio of maximum lengths of humerus to radius at
2.2, proximal end of ulna massive with ratio of maximum
length to maximum proximal width at 2.1. And from referred
specimens: Metacarpal I with square proximolateral corner and
first phalanx of digit I is stout, short, and twisted along its
length, metacarpal II short but extremely massive with ratio of
maximum length to maximum proximal width at 1.5, metacar-
pal III massive (same ratio 2.2). Ilium heavy with 2 very low
dorsal blade tapering to a rounded point posteriorly and 2 wide
brevis shelf, acetabulum wide but shallow, transversely wide
distal end to pubic peduncle. Pubis and ischium subequal in
length and subacetabular region deep and unemarginated with
an almost continuous ventromedian symphysis, obturator fora-
men in pubis that terminates in a small anteroposteriorly ex-

panded foot or pedicle, indentation in posterior edge of pubis
to receive corresponding anterior part of ischium that is poste-
riorly bowed. Massive tibia. Dorsal process of astragalus is
triangular in outline with a vertical lateral edge, metatarsus
massive. Dentary short with nine teeth and no Meckelian
groove exposed on the medial surface. Centra of the vertebrae
from the third cervical to the middle of the dorsal series are
markedly opisthocoelous, and the ball-like area is delimited by a
groove from the more peripheral anterior surface of the cen-
trum. In vertebrae of the posterior half of the dorsal series the
posteroventral surfaces of each pair of transverse processes form
one continuous curve which passes through a large fenestra in
the pillar carrying the postzygapophyses and zygosphenes. In
the vertebrae of the posterior third of the dorsal series the supe-
rior surfaces of the prezygopophyses are overlapped from their
rear by an expansion from the base of the supraprezygopophy-
sial laminae.

FIGURE 2.—Torvosaurus tanneri n. gen. et sp. Articulated forelimb and pelvic girdle. A-C, holotype BYU 2002 X1/8, left humerus, radius and ulna in A, posterior
view; B, lateral view; C, anterior view; D-F, paratypes BYU 2013-2015 X1/12, right pelvic girdle in D, lateral view; E, anterior view; F, venrral view.
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DESCRIPTION AND COMPARISONS

Humerus, Radius, Ulna

As with most of the material of Torvosaurus tanneri (excep-
tion three cervicals BYU 2004), the six bones of the holotype
were found disassociated but in the same section of the quarry.
The sizes of corresponding bones are almost identical, the
bones articulate well together at the elbow joint, and no other
long bones of the forelimb were found in that section of the
quarry. Consequently, the bones of the holotype undoubtedly
represent left and right sides of the same animal and have been
numbered accordingly.

The humerus (figs. 1A-1F, 2A-2C) is almost straight in
lateral view (fig. 1B), the proximal and distal ends are broad
(figs. 1E, 1F), and the deltopectoral crest is large (figs. 1A, 1B, .
1D, 1F), extending down the shaft to a point just beyond mid-
length. A rugose area on the lateral surface of the shaft posteri-
or to the deltopectoral crest (fig. 1B) is probably the area of
origin of the humeroradialis muscle (cf. Gilmore 1920, pl. 6,
figs. 2,4 and Madsen 1976a, figs. 7A,C for Allosaurus). The radi-
us and ulna are proportionally short but stout bones (figs.
1G-1L, 2B), with the proximal part of the ulna (figs. 1G-1],
1L) and the distal part of the radius (figs. 1G-1K) being par-
ticularly massive. The principal measurements and ratios of the
bones of the forelimb of Torvosaurus and other theropods are
given in tables 1 and 2.

The only other Upper Jurassic theropod with a straight-
shafted humerus is the primitive ornithomimid (see Russell
1972) Elaphrosanrus (Janensch 1925), but the bone is very slen-
der with a low deltopectoral crest as is also-the case in Cre-
staceous ornithomimids (Osborn 1917). The shaft of the hu-
merus of some Cretaceous tyrannosaurids is also stfaight (fig.
3D: Tarbosaurns, Maleyev 1974, Tyrannosaurus Osborn 1917),
and the ulna is proportionally short. However, comparisons of
the forelimb of Torvosaurus with the other bones of the body
show that it is proportionally large rather than relatively small
as in tyrannosaurids. The humerus, radius, and ulna of Allo-
saurus (fig. 3C; Gilmore 1920, Madsen 1976a) and the radius
and ulna of Ceratosaurus (fig. 3]; Gilmore 1920) are very differ-
ent from the corresponding bones of Torvosaurus (figs. 1A-2C,
3A, 3G). However, the humerus of Ceratosaurus (fig. 3T) is

similar to that of Torvosazrus (J. H. Madsen, Jr. pers. comm.).
Certain theropod forelimb bones from the Middle Jurassic of
Europe are similar to those of Torvosaurus: an isolated humerus
and ulna from southern England that are referred to Megalo-
saurus (figs. 3E, 3I) and the forelimb of Pozkiloplenron (figs. 3B,
3H; Eudes-Delongchamps 1838) from France. In both cases the
humerus is massive with a large deltopectoral crest, and the
ulna is proportionally short with a massive proximal end. How-
ever, the outlines of the deltopectoral crests are different (figs.
3A, 3B), and for Megalosaurus the distal part of the humerus is
slightly curved (fig. 3E), and the outline of the proximal part
of the ulna differs from that of Torvasanrus (figs. 3G, 31). The
proximal ends of the radius and ulna of Pozkiloplenron differ
from those of Torvesaurus (figs. 3G, 3H), and the radius has a
unique protuberance on the middle of the shaft (fig. 3H).
Hulke (1879) reidentified with the radius and ulna of Pozés-
lopleuron as metatarsals, and this is accepted by Steel (1970), but
it is incorrect. The humerus of Eustreptospondylus Walker (1964)
from the upper Middle Jurassic of England has a low deltopec-
toral crest (fig. 3F).

Manus

The metacarpus of Torvesaurus consists of at least three
stout metacarpals (fig. 3L), and, although not discovered to
date, it is probable that metacarpals IV and possibly V were
also present because IV is present in Ceratosaurus (fig. 3N), and
von Huene (1926) reports a metacarpal V in Poikiloplenron.
Metacarpal I (figs. 3L, 4A-4C) differs from those of Allosaurus
(fig. 30) and Poikilgplenron (fig. 3M) in being more massive,
the proximolateral corner is square (figs. 3L, 4A) rather than
carrying an obliquely inclined surface (figs. 3M, 30; part of in-
termedium fits against this surface,” Gilmore 1920, Madsen
1976a). The form of metacarpal 1 (fig. 3N) of Ceratosaurus is
not clear from the illustrations given by Gilmore (1920), but it
appears to be a more lightly built element. Metacarpal II of
Torvosaurus (figs. 3L, 4D-4F) is massive compared to that of
Ceratosanrus (fig. 3N) and extremely massive and short com-
pared to that of Allosaurus (figs. 30, 4G, 4H). If correctly
identified, metacarpal III of Torvosaurus (figs. 3L, 41-4K) is
proportionally shorter and stouter than that of Allosaurus (fig.
30) and shorter and more slender than that of Ceratosanrus

TABLE 1
MEASUREMENTS (in mm) OF FIGURED FORELIMB BONES
OF TORVOSAURUS TANNERI N. GEN. ET SP.

Bone L S PT Pw DT DW
Humerus 424 70 60 192 55 164
Radius 188 38 45 71 47 68
Ulna 220 55 69 106 53 89
MCI 72.3 45 52 50 - 47
MCII 117.5 48.5 57.3 80 - 64
MCIII . 96.5 24 52.0 45% - 45
DT, thicki of distal end (di a¢ tight angles to maximum width); DWW, maximum width of distal end; L, maximum length; PT, thick | end (di: at right angles to maximum widch);
PV, i width of proximal end; S, i shafc di at level of smallest diameter when viewed anteriorly; *estimated.
TABLE 2
RATIOS FOR ASSOCIATED FORELIMB BONES OF CARNOSAURIAN THEROPODS
Genus H (in mm) H/R H/U H/MC U/PU
Poikiloplenron 306* 1.8 1.7 - 2.2
Torvosaurus 425 2.2 1.9 - 2.1
Allosaurus' 310 14 1.2 2.9 44
Tarbosaurus 255 2.3 2.2 2.6 43
Daspletosaurus® 225 2.3 19 3.3 39
Albertosaurust 324 2.1 1.8 3.3 3.3

H, maximum length of humerus; MC, maximum length of metacarpal II; PU, maximum width of proximal end of ulnz; R, maximum length of radius; U, maximum length of ulna.
1Gilmore (1920); 2Maleyev (1974); *Russcll (1970); ‘Lambe (1917); schis ratio is 2.5 for Ceratosaurus; *estimated.
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(fig. 3N). Proximally, a well-striated area on the medial surface
(figs. 41, 4], 4K)) was overhung and contacted by metacarpal II
(figs. 3L, 4F).

An isolated phalanx (figs. 3L, 4L-4N) bears no resem-
blance to any phalanges of the manus of Allosaurus (fig. 30;
Gilmore 1920, Madsen 1976a) or of any other theropod from

somewhat more massive, this phalanx is similar to the left first
phalanx of digit I of prosauropod dinosaurs (figs. 3R, 3S, 5;
Galton 1976, Galton and Cluver 1976). In particular, the pha-
lanx is twisted along its length (fig. SE-5H) so the distal con-
dyles are set at an angle to the proximal end (fig. 5F). The first
phalanx of digit I has a twisted form but is much more slender
in the Upper Triassic coelurosaur Synsarsus (fig. 3Q) and in the

the Upper Jurassic or Cretaceous. However, apart from being

FiGURE 3.—Comparisons of bones of left forelimb, mostly of theropod dinosaurs. A~F, lateral view with humerus reduced to unit length, A, Torvosaurus tanneri n.
gen. et sp.; B, Poikiloplenron from Middle Jurassic of France, cast YPM 4839 with digit I after Eudes-Deslongchamps (1838); C, Allosaurus from Upper
Jurassic of Colorado, Utah, and Wyoming, after Gilmore (1920); D, tyrannosaurid Daspletosanrus from Upper Cretaceous of Alberta, modified after Russell
(1970); E, Megalosaurus from Middle Jurassic of England, after Huene (1926); F, Eustreptospondylus from Middle Jurassic of England, after figure provided by
H. P. Powell and S. P. Welles; G-K lateral view of forearm with ulnae reduced to unit length; G, Torvosaurus; H, Poikilopleuron; 1, Megalosaurus, after
Huene (1926); J, Ceratosaurus from Upper Jurassic of Colorado and Utah, after Gilmore (1920); K, Allosaurus; L-S manus in anterior or dorsal view; L,
Torvosaurus; M, Poikiloplenron metacarpal and firse phalanx of digit I, after Eudes-Deslongchamps (1838); N, Ceratosanrus, after Gilmore (1920); O, Allo-
saurus with metacarpal 1 after Madsen (1976a); P, Eustreptospondylus, first phalanx of digit I, after Huene (1926); Q, coclurosaurian theropod Syntarsus from
Upper Triassic of Rhodesia, after Galton (1970); R, prosauropod Plaseosaurus from Upper Tnassic of Germany, UT 1; S, prosauropod Lufengosaurus from
Upper Triassic of China, after Galton and Cluver (1976; sce figure 7 for manus of other prosauropods); T, humerus of Ceratosaurus, after figure supplied by J.
H. Madsen, Jr. Scale lines represent 1 cm (N,P,Q) or 5 cm.



6

Middle Jurassic megalosaurids Poikiloplenron and Eu-
Streprospondylus (figs. 3M, 3P). The phalanx is very elongate but
shows some twisting in Allosaurus (fig. 30) and in the Cre-
taceous tyrannosaurids Albertosaurus (Lambe 1917) and Das
Dletosanrus (fig. 3D).

The large ungual phalanx of digit I (fig. 1M) may be refe-
rable to Torvosaurus, but it should be noted that it was found
at Calico Gulch Quarry in Moffat County, Colorado, 195 km
from the Dry Mesa Quarry. The area of attachment of the flex-
or tendons is more rugose than is the case in Allosauras (Gil-

more 1920, Madsen 1976a).

P. M. GALTON AND ]J. A. JENSEN

Pelvic' Girdle

A slightly crushed right ilium (fig. 6A-GE), both pubes
(fig. 6GF-GH), and the right ischium (fig. 6I) of Torvosaurus
have been recovered to date and, on the basis of the closeness
of the fit of the bones of the right side (figs. 2D-2F, 7), it is
reasonable to assume that those bones came from the same in-
dividual. The main body of the ilium is low (figs. 2D, 6A, 7)
with a long tapering postacetabular process and a relatively
shallow acetabulum with a relatively strong ischiadic peduncle
and a weak pubic peduncle, the transverse width of which is
greater than the anteroposterior width (figs. GA, 6B, 6D).

FIGURE 4.—Manus elements of Torvosaurus tanneri n. gen. et sp. (paratypes A-F, [-N) and Allosaurus (G,H), all from lefe side X0.5. A-C, metacarpal I, BYU 2010
in A, dorsal; B, medial; and C, distal views; D-F, metacarpal II, BYU 2011 in D, dorsal; E, medial; and F, distal views; G,H, Allosaurus, BYU 2021 in G,
medial; and H, dorsal views; [-K, metacarpal III, BYU 2012 in I, medial; J, dorsal; and K, distal views; L-N, phalanx 1 of digit I, BYU 2018 in .L, distal; M,
lateral; and N, dorsal views; O-Q, phalanx 1 of digit I from smaller individual of ?Torvesaurus, BYU 2021 in O, lateral, P, distal, and Q, dorsal views.
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However, this apparent weakness may be an artifact of crushing
during preservation. In ventral view (fig. 6B) the acetabulum
and brevis shelf are both wide. The subacetabular part of the
pubis and ischium is unemarginated (figs. 2D, 2F, 6G, €I, 7) so
an almost continuous medial symphysis is present (fig. 2F), the
obturator foramen of the pubis is enclosed (figs. 2D, 2F, 6G),
and an obturator process is not delimited from the rest of the
ischium (figs. 2D, 6J). The pubis and ischium meet along an
extensive suture, are subequal in length, and are shorter than
the ilium (figs. 2D, 7). The iliac articulation of the pubis is
shorter than the part bordering the acetabulum (figs. 2D, 6G).
The thicker parts of the pubis are the acetabular margin and
the anterolateral part (figs. 2D-2F, 6F-6H) that expands dis-
tally to form 2 small foot or pedicle, whereas the ventromedial
part is a thin sheet (figs. 2E, 2F, 6F-GH). The ischium is broad
proximally (figs. 2D, 6I) with a thin medial part (figs. 2F, ¢J),
and the distal part is bowed posteriorly with a small, symmetri-
cally expanded end (fig. 2D, 6I).

The ilium of Allosaurus (fig. 8]; Gilmore 1920, Madsen
1976a) differs from that of Torvosaurus (figs. 6A-GE, 8H) in the
following features:

1. Body deep with a deep acetabulum.

2. Postacetabular process squared off posteriorly with

rounded corners.

3. Massive pubic peduncle with transverse width greater

than anteroposterior thickness.

4. Relatively weak ischiadic peduncle.

5. Narrow acetabulum and brevis shelf in ventral view.
The ilium of Ceratosaunrus (fig. 8G; Gilmore 1920) also differs
in features 1, 3, and 4 and in the narrowness of the notch be-
tween the anterior process and the pubic peduncle. The ilium
of Marshosaurus (fig. 81; Madsen 1976b) differs in features 1 to
4, and the brevis shelf appears to be narrow. The ilium of Sto-
kesosaurus (fig. 8K; Madsen 1974) differs in features 1 and 3-5,
and, in addition, there is a prominent vertical ridge above the
acetabulum that is also present on the ilium of Hiosuchus (figs.
8R, 8S) from the Middle Jurassic of England. A similar but less
strongly developed ridge is present on the ilium of Megalo-
saurus (fig. 80) that also differs in features 1, 3, 4, and 5 from
the ilium of Torvesaurus. The incomplete ilium of Ex-
streptospondylus is similar to that of Torvesaurus (fig. 8R), but
only the lateral view is figured.

The pubis of Allosanrus (fig. 8]) differs from that of Torvo-
saurus (figs. 2D-2F, 6F-6H, 8H) in the following features:

7

FIGURE 5.—Plateosaurus from Upper Triassic of Germany, UT 1, approx. X0.5, lefc metacarpal (A-D) and phalanx 1 (E-H) of digit I of manus in medial (AE),
dorsal (B,F), lateral (C,G), and ventral (D,H) views. Scale line 2 cm.
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1. Ventrally, subacetabular part emarginated.

2. Open obturator notch present.

3. Pubis longer than ischium

4. Iliac articulation longer than acetabular margin.

5. Large foot or pedicle.
The pubis of Marshosaurus (fig. 81) differs in features 1 to 4,
and that of Ceratosanrus (fig. 8G), in features 1 and 3-5 from
the pubis of Torvosazrus. The pubis of Eustreptospondylus (figs.
8P, 8Q) had an enclosed obturator foramen (Huene 1926), but
the bone is more slender than that of Torvosanrus, and only the
distal half of the pubes were in contact (fig. 8Q). The pubis of
Megalosanrus (fig. 8L) is shown very similar to that of Torvo-
sayrus, but in the text Huene (1926, p. 51) notes that “very
remarkable is the extremely narrow, in fact rodlike, pubis—the
proximal widening containing the obturator foramen dis-
appears within a short distance from the proximal end.” How-
ever, Walker (1964) shows that the subacetabular region is
deep and that the pubes were joined for most of their length
(figs. 8M, 8N).

The ischia of Allosaurus, Ceratosanrus and Marshosaurus
(figs. 8G, 8l, 8]) differ from that of Torvosaurus (figs. 2D-2F,

61, 8H) in the development of an obturator process as the re-
sult of ventral emargination and in the straightness of the
bone. Megalosaurus is shown with a deep ischium (fig. 8L), but
it is uncertain how much of the subacembular region is re-
stored.

DISCUSSION

The morphology of the forelimb and pelvic girdle of Torvo-
saurus is more similar to that of the Middle Jurassic theropods
Megalosaurus and Poikiloplenron of Burope than it is to that of
the other genera from the Morrison Formation of the western
United States. It is for this reason that Torvssanrus is referred to
the family Megalosauridae rather than to the Allosauridae. In
several features the anatomy of Torwosanrus is more conservative
for a carnosaur than is that of Allosaurus, Ceratosaurus, and
Marshosanrus, and this is particularly true for the form of the
pubis and ischium (figs. 8G-8]). A complete obturator fora-
men in the pubis is extremely unusual in theropods and is re-
ported only in the Upper Triassic coelurosaur Syntarsus (fig.
8E), in the Middle Jurassic carnosaurs Megalosaurus and Eu-
streptospondylus (figs. 8L, 8P; Huene 1926), and in Ceratosaurus
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(fig. 8G). An obturator foramen is present in Herrerasaurus
(fig. 8C; Reig 1963) from the early Upper Triassic, but the
family Herrerasauridae is regarded as Saurischia incertae sedis by
Galton (1977¢) and as the earliest sauropod dinosaur by Van
Heerden (1978): An obturator foramen was described for the
Lower Cretaceous theropod Deinonychus (Ostrom 1969) but the
element concerned was reidentified as a coracoid (Ostrom
1974), and there is no room for an obturator foramen in a re-
cently described pubis (Ostrom 1976). An obturator foramen is
present in the pubis of members of the Upper Triassic Orni-
thosuchidae, a family Walker (1966) transferred to the Thero-
poda, but Walker (1977) now follows Bonaparte (1969, 1975)
in placing this family in the Thecondontia (i.e., non-
dinosaurian). The pubes and ischia meet for most of their
length at a medial symphysis in only four saurischians (other
than prosauropods and sauropods) described to date: Herrera-
saurus, Syntarsus, Megalosaurus (pubis), and Torvosaurus (figs.
8C, 8E, 8H, 8M, 8N).

In discussing the pelves of Triassic dinosaurs, Colbert
(1964) distinguishes between the brachyiliac type of pro-

sauropods (fig. 8A, 8B; sauropod pelvis derived from this type)
and the dolichoiliac type of coelurosaurs (fig. 8F) from which
he derives the “true carnosaurian” pelvis (fig. 8]). The doli-
choiliac type of pelvis probably cvolved from the brachyiliac
type of pelvis of the basal saurischian stock in a mosaic fashion
at different rates in several different lines of saurischian dino-
saurs. The earliest saurischian dinosaur described to date, Stax-
rikosaurus pricei from the uppermost Middle Triassic of Brazil
(Colbert 1970), already has a dolichoiliac-type pubis and is-
chium associated with a basically brachyiliac-type ilium (fig.
8D; Galton 1973, 1977¢). Staurtkosaurus may be an early coelu-
rosaur, but it is probably best regarded as Saurischia zmcertae
sedis (Galton 1977¢). In Torvosaurus, the ilium is dolichoiliac,
but the pubis and ischium are brachyiliac. This is the first dem-
onstration of this combination in a carnosaurian theropod from
the Upper Jurassic. Bonaparte (1969, p. 480) noted that the
“evidence for linking the Carmnosauria with the Coelurosauria
(Colbert 1964; Charig and others 1964) is as ambiguous as that
for linking the Carnosauria with the Prosauropoda (Huene
1956; Romer 1956).” It should be noted that the division of

FIGURE 6.—Torvosaurus tanneri n. gen. et sp. right pelvic girdle, paratypes X1/8. A-E, ilium BYU 2013 in A, lateral; B, ventral; C, medial; D, anterior; and E,
posterior views; F-H, pubis BYU 2014 in F, ancerodorsal view; G, medial view with section; H, posteroventral view with distal end; I, ischium BYU 2015 in
medial view; J, pubis and ischium in dorsal view. 2, acetabulum; ap, anterior process; b, brevis shelf; f, foot or pedicel; i, ischiadic head; il, surface for ilium;
is, sutural surface for ischium; o, obrurator foramen; p, pubic peduncle; pu, surface for pubis; v, ventral symphysis berween pubes or ischia.
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the Theropoda into the Coelurosauria and Carnosauria may be
artificial (Ostrom 1969, 1978) because the Upper Jurassic thero-
pod Compsognathus (family Compsognathidae) is very small, yet
it has many carnosaurlike characters (Ostrom 1978), and the
Cretaceous family Dromaeosauridae show a combination of
coelurosaurian and carnosaurian characters (Ostrom 1969). Col-
bert and Russell (1969) erected a third theropod infraorder, the
Deinonychosauria, for the last family that probably originated
from a line close to the Upper Jurassic coelurid Ormitholestes
(Ostrom 1969). We suggest that the anatomy of the pubis and
ischium of Torvosaurus strengthens the case for regarding the
Jurassic Megalosauridae (and the Carnosauria if this is a natural
group) as descendants of the Prosauropoda rather than of an-
other theropod currently included in the Coelurosauria. It
should also be noted that the form of the humerus and pha-
lanx 1 of digit I of the manus of Torvosaurus is more similar to
those of prosauropods than to those of coelurosaurs.

The ilium of Stokesosaurus clevelandi Madsen 1974 has a
prominent vertical ridge above the acetabulum (fig. 8K). This
ridge is also present on ilia of Hiosuchus incognisus (Huene 1932)
from the Middle Jurassic of England (figs. 8S, 8T) and, on the
basis of this feature, Galton (1975) suggested that the Morri-
son species should become josuchus clevelandi (Madsen). How-
ever, a similar but less pronounced vertical ridge is also present
on an ilium of Megalosaurus bucklandi (fig. 80), although no
indication of it was given by Walker (1964, fig. 16d). The out-
line of the ilium of the Upper Cretaceous Tyrannosaurus is dif-
ferent, but there are traces of a vertical ridge (Romer 1923, fig.
1) which is interpreted by Russell (1972) as the boundary be-
tween the areas of origin of the anterior and posterior heads of
the iliofemoralis muscle. In reconsidering the problem, the sen-
ior author now considers that there is insufficient evidence to
justify making Stokesosaurus Madsen 1974 a junior synonym of
iosuchus Huene 1932. Consequently, the genus Iiosuchus is re-

FIGURE 7.—Torvosaurus tanneri n. gen. et sp., right pelvic girdle in lateral view, paratypes BYU 2013-2015, approximately X0.20.
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stricted to the Middle Jurassic of southern England and is not
present in the Upper Jurassic of western United States. How-
ever, lzosuchus incognitus Huene is still regarded as a valid taxon
distinct from its much larger contemporary Megalosaurus buck-
landi.
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