Tertiary Minette and Melanephelinite Dikes, Wasatch Plateau, Utah:
Records of Mantle Heterogeneities and Changing Tectonics

DAVID G. TINGEY, ERIC H. CHRISTIANSEN, AND MYRON G. BEST
Department of Geology, Brigham Young University, Provo, Utah
JOAQUIN RUZ
Department of Geosciences, University of Arizona, Tucson
DANIEL R. LUX
Department of Geology, University of Maine, Orono

A swarm of minette and melanephelinite dikes is exposed over 2500 km² in and near the Wasatch Plateau, central Utah, along the western margin of the Colorado Plateaus in the transition zone with the Basin and Range province. To date, 110 vertical dikes in 25 dike sets have been recognized. Strikes shift from about N80°W for 24 Ma dikes, to about N60°W for 18 Ma, to due north for 8-7 m.y. These orientations are consistent with a shift from east-west Oligocene compression associated with subduction to east-west late Miocene crustal extension. Minettes are the most common rock type; mica-rich minette and mica-bearing melanephelinite occurs in 24 Ma dikes, whereas more ordinary minette is found in 8-7 Ma dikes. One melanephelinite dike is 18 Ma. These mafic alkaline rocks are transitional to one another in modal and major element composition but have distinctive trace element patterns and isotopic compositions; they appear to have crystallized from primitive magmas. Major, trace element, and Nd-Sr isotopic data indicate that melanephelinite, which has similarities to ocean island basalt, was derived from small degree melts of mantle with a chondritic Sm/Nd ratio probably located in the asthenosphere, but it is difficult to rule out a lithospheric source. In contrast, mica-bearing rocks (mica melanephelinite and both types of minette) are more potassic and have trace element patterns with strong Nb-Ta depletions and Sr-Nd isotopic compositions caused by involvement with a component from heterogeneously enriched lithospheric mantle with long-term enrichment of Rb or light rare earth elements (REE) (epsilon Nd as low as - 15 in minette). Light REE enrichment must have occurred anciently in the mid-Proterozoic when the lithosphere was formed and is not a result of Cenozoic subduction processes. After about 25 Ma, foundering of the subducting Farallon plate may have triggered upwelling of warm asthenospheric mantle to the base of the lithosphere. Melanephelinite magma may have separated from the asthenosphere and, while rising through the lithosphere, provided heat for lithospheric magma generation. Varying degrees of interaction between melanephelinite and small potassic melt fractions derived from the lithospheric mantle can explain the gradational character of the melanephelinite to minette suite.

INTRODUCTION

Mafic alkaline igneous rocks provide important information about the nature of Earth's heterogeneous upper mantle and the processes that have shaped it. Recognition of such rocks in a swarm of late Tertiary (24–7 Ma) dikes in the Wasatch Plateau area on the northwestern margin of the Colorado Plateaus province (Figure 1) thus provides the opportunity to draw inferences about the petrology of the mantle beneath this section of the North American craton as well as its changing tectonic character during episodes of intrusion in the Tertiary. In the western United States, this interval of time includes marked changes in tectonism and magmatism as subduction of oceanic lithosphere ceased and extension and rifting of the continental lithosphere became dominant.

In this paper, we present data on the Wasatch Plateau dike swarm, parts of which were first described by Spieker [1931] and Thomas [1976]. Additional information on the swarm is from Tingey [1989].

Copyright 1991 by the American Geophysical Union.

Paper number 91JB00327
0148-0227/91/91JB-00327$05.00

GEOLOGIC SETTING

Colorado Plateaus Province

The Colorado Plateaus consist of a relatively thin veneer of Phanerozoic sedimentary rocks about 3–5 km thick that overlies a basement of Precambrian igneous and metamorphic rocks [Hintze, 1988]. Crystallization ages (1.69–1.79 Ga) and Nd model ages (1.8–2.0 Ga) of basement rocks in the region indicate the lithosphere formed during the Proterozoic and that little or no Archean crust is present [Condie, 1986; Bennett and DePaolo, 1987]. Crustal thickness in the northwestern part of the province is uncertain but has been interpreted to range from 45 km to as low as 25 km in the transition zone [Smith et al., 1989]. Although Bird [1979, 1988] suggested that the lithospheric mantle was removed by delamination during middle Tertiary subduction, modern seismic studies show the presence of a high-velocity layer which is reasonably interpreted as normal lithospheric mantle [Beghoud and Barazangi, 1989]. The lithosphere appears to be 90–100 km thick, about 1.5–2 times as thick as that of the adjacent Basin and Range province [Patissier, 1989].

The Mesozoic through early Cenozoic history of the western United States was dominated by subduction of oceanic lithosphere,
compressive deformation, and magmatism that penetrated far inland [Severinghaus and Atwater, 1991]. During the late Cretaceous-early Tertiary Laramide orogeny the Colorado Plateaus were mildly deformed into basement-cored uplifts and adjacent basins. In the central plateaus, no magmatism was associated with this compressive event. About 50–20 Ma, voluminous calc-alkaline magmas were erupted to the east, forming the San Juan volcanic field, and to the west in the Great Basin and transition zone [Lipman, 1980; Best and Christiansen, this issue]. In contrast, only sparse, essentially alkaline magmas were emplaced at the present level of erosion in the plateaus during this interval, including some of the alkaline dike rocks that are the subject of this report as well as diorite-syenite laccolith complexes 30–20 Ma [Sullivan et al., 1991]; extrusive rocks are absent. Following the demise of subduction, the margins of the Plateaus province were defined by late Cenozoic normal faulting to form the Great Basin on the west (since about 10–12 Ma along the Wasatch fault [Kowallis et al., 1990; Naeser et al., 1983; Zoback et al., 1981]) and the Rio Grande rift on the east since the Oligocene. Extension in these flanking provinces has been much greater than in the plateaus and has been accompanied by eruption of small volumes of basaltic lavas since the middle Miocene. Even smaller volumes of alkaline mafic magma were emplaced in the plateaus during this interval of time. The cause and timing of the uplift of the Colorado Plateau remain controversial but may have occurred in the late Cenozoic in response to foundering of the subducting Farallon plate away from the base of the continental lithosphere during the transition from subduction to extension [e.g., Beghoul and Barazangi, 1989] and consequent movement of hotter, less dense asthenospheric mantle into its place.

The Wasatch Plateau lies near the northwestern margin of the Colorado Plateaus in the transition zone to the highly extended Great Basin segment of the Basin and Range province to the west (Figure 1). The transition zone has experienced multiple episodes of fracturing, the most pronounced of which formed steeply dipping normal faults that dissected the Wasatch Plateau into several roughly north trending horsts and grabens (Figure 2). Less common are steeply dipping, northwest striking normal faults of unknown age, which form the Fish Creek graben [Walton, 1955], and steeply dipping, small-offset, east and northeast striking normal faults.

Wasatch Plateau Dike Swarm

Field relations and age. The Wasatch Plateau dike swarm is composed of thin vertical dikes, generally less than 2 m in width, that are exposed throughout an area of at least 2500 km² encompassing the northern Wasatch Plateau and adjacent Castle Valley (Figure 1b). More than 110 dikes have been located within the swarm. At the surface, the dikes cut nearly horizontal sedimentary rocks of Cretaceous and early Tertiary age. Deuteritic alteration is common, particularly in mica-rich dike rock, in which case the dike is manifest by orange soil rich in flakes of altered phlogopite; such dikes are commonly bordered by more erosionally resistant contact metamorphosed wall rock. More resistant dikes generally lack this collar and occur as linear trends of rubble. Where encountered in underground coal mines, dikes have "ballooned" into coal beds, forming sill-like masses as much as several tens of meters wide. Most such masses have no surface outcrop. Some dikes are composite and some show margin-to-core variations in texture. Variations in modal abundance of phlogopite phenocrysts were noted in one large north striking dike (Devils Slide dike [Tingey, 1989]).

No associated lava flows have been found in the dike swarm, and no mantle-derived inclusions have been found in any dike, but some contain xenoliths of sedimentary rock. Sparse, widely scattered mafic lamprophyre dikes near Mona, Utah (Figure 1 and Phillips [1962]), one of which is 23.2 Ma [Witkind and Marvin, 1989], could represent the western end of the swarm.

Dikes may be grouped on the basis of orientation and age (Figure 3 and Tables 1 and 2), and the rocks can be classified (see petrology section) on the basis of mineralogical and chemical composition.

Fig. 1a. Index map of Colorado Plateaus and Cenozoic alkaline magmatic loci referred to in the text. LH, Leucite Hills; MC, Moon and Smith-Morehouse canyons and Park City; EH, Elkhead Mountains; WP, Wasatch Plateau; MO, Mona; SLC, Salt Lake City; SR, San Rafael Swell and Capitol Reef; NV, Navajo; HB, Hopi Buttes. Fine stippled areas in southeastern Utah are diorite-syenite laccolith complexes.

Fig. 1b. Generalized map of dikes within the Wasatch Plateau dike swarm. Stippled band marks the transition between the plateau and Castle Valley.
Here, it is sufficient to note that a simple classification useful in the field recognizes two types: first, a hard, dense, black, mostly fresh rock containing phenocrysts of olivine, clinopyroxene, and, in some dikes, phlogopite; such rock we call melanephelinite. Second, a generally altered, nonresistant rock containing abundant phenocrysts of phlogopite which we call minette. Two varieties (see petrology section) of minette occur in westerly and north striking dikes that are, within analytical uncertainties, 24 and 8–7 Ma, respectively. Less common are two varieties of melanephelinite in westerly and in west-northwest striking dikes, one of which is 18.3 Ma (Figure 3).

Relation to regional magmatic trends. The mafic alkaline dikes in the Wasatch Plateau are associated with two major magmatic zones. One is the roughly north-south trending, diffuse zone of Tertiary alkaline rocks that extends from Canada to Mexico, borders the craton [Barker, 1974] and is located predominantly just east of and parallel to the Mesozoic thrust belt [Sullivan and Best, 1986]. The second is the west trending Tintic-Deep Creek magmatic zone in the eastern Great Basin described by Stewart et al. [1977] that is marked by 42–23 Ma predominately calc-alkaline magmatic rocks; the Wasatch Plateau alkaline dikes lie at the eastern end of this zone (Figure 2).

The Wasatch Plateau dikes are of about the same age and composition as dikes and lava flows to the north and south in the alkaline zone, as follows (Figure 1a): 39.7 Ma melilitic lamprophyre in Smith-Morehouse Canyon, Utah [Best et al., 1968]; 13 Ma and 41–38 Ma lamproites in Whites Creek and Moon Canyon, Utah [Best et al., 1968]; 1.25–1.1 Ma lamproites in the Leucite Hills, Wyoming [Bergman, 1987]; 26–19 Ma mafics and felsic minettes in the Navajo volcanic field in the Four Corners area [Laughlin et al., 1986; Alibert et al., 1986; McDowell et al., 1986; Roden et al., 1990]; 5–2 Ma monchiquite (melanephelinite) in the Hopi Buttes in northern Arizona [Alibert et al., 1986; Fitton et al., 1988]; 7–3 Ma alkalic mafic dikes in the San Rafael Swell-Capitol Reef area in east central Utah (Table 2 and Gartner and Delaney [1988]). Isotopic ages of the San Rafael Swell and Wasatch Plateau swarms overlap somewhat (Table 2); young dikes in the Wasatch Plateau and those in the San Rafael Swell swarm are essentially north striking. Future work may show all of the late Miocene dikes to be one swarm.

Even though the Wasatch Plateau dike swarm and the other two loci of alkaline magmatism in Utah lie at the eastern ends of zones of middle Tertiary calc-alkaline activity that extend far into the Great Basin (Figure 2), temporal and, of course, compositional ties are poor. Tertiary calc-alkaline volcanism in most of the Great Basin clearly swept southward [Best and Christiansen, this issue] until sometime in the Miocene, after which more or less bimodal basaltic-rhyolitic activity flared up in many locations at different times. For the alkaline magmatism in Utah, only in the time of inception was there a southward shift (Figure 2); timing of calc-alkaline and alkaline episodes correlate poorly.
Tectonic implications. Dikes in the Wasatch Plateau swarm parallel regionally extensive fractures, solid hydrocarbon fracture fillings, and large-scale positive aeromagnetic anomalies in the Great Basin and northern Colorado Plateaus (Figure 2). The swarm is thus not just a local, isolated tectonic feature but is part of a regional pattern of crustal features. Although it is beyond the scope of this paper to interpret the aeromagnetic anomalies, the possibility that they represent deep crustal mafic intrusions is suggested by the coincident positive gravity anomalies documented by Smith and Cook [1985]. However, their work discloses that the northwest trending magnetic anomaly from south of Grand Junction to Price (Figure 2) is controlled to some extent by major fault blocks in the Precambrian basement.

Conventionally, the least principal horizontal stress during magma injection is interpreted to be perpendicular to the dike [Anderson, 1951]. However, Best [1988] suggested caution when using dikes in paleostress determinations because, as Delaney et al. [1986] have shown, magma may in certain situations be injected into favorably oriented preexisting fractures not perpendicular to the contemporary least principal stress. Where multiple regional fracture systems are present, as in the transition zone and northern Colorado Plateaus, the possibility that magmas were injected into...
<table>
<thead>
<tr>
<th>Sample</th>
<th>Temperature °C</th>
<th>Longitude W, Latitude N</th>
<th>Rock Type</th>
<th>Material Dated</th>
<th>39 Ar/39 Ar</th>
<th>Area</th>
<th>Cumulative 39 Ar (%)</th>
<th>J</th>
<th>Age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRE-2</td>
<td></td>
<td>111°06'54" 38°37'58"</td>
<td>pb</td>
<td>whole rock</td>
<td>San Rafael Swell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>35.07</td>
<td>2.5243</td>
<td>0.1154</td>
<td>2.0</td>
<td>0.005795</td>
<td>12.03 ± 2.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>925</td>
<td>4.07</td>
<td>3.9723</td>
<td>0.0127</td>
<td>34.1</td>
<td>6.37 ± 0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>1.87</td>
<td>0.7629</td>
<td>0.0042</td>
<td>5.82</td>
<td>6.97 ± 0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1075</td>
<td>1.68</td>
<td>0.8258</td>
<td>0.0037</td>
<td>75.1</td>
<td>6.47 ± 0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUSE</td>
<td>2.12</td>
<td>4.7839</td>
<td>0.0054</td>
<td>100.0</td>
<td>9.07 ± 0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOL-3		111°15'05" 38°30'39"	pb	whole rock	San Rafael Swell	
750	43.85	1.3016	0.1453	0.4	0.005795	10.27 ± 2.08
875	4.03	4.9179	0.0131	9.3	5.35 ± 0.45	
1000	1.62	0.9313	0.0040	36.9	5.03 ± 0.21	
1075	1.12	0.6203	0.0022	54.0	5.00 ± 0.16	
FUSE	1.17	2.6111	0.0028	100.0	5.28 ± 0.07	

WAT-6		111°04'35" 39°31'56"	m	phlog	Wasatch Plateau	
750	16.30	1.3368	0.0541	1.2	0.005872	3.95 ± 2.00
875	2.43	7.0773	0.0083	11.2	5.92 ± 0.25	
1000	0.84	1.3074	0.0009	46.7	6.71 ± 0.11	
1075	0.87	0.3117	0.0007	65.0	6.86 ± 0.13	
FUSE	1.00	0.6824	0.0011	100.0	7.29 ± 0.11	

Age determinations by D. Lux. For method, see Lux [1985]; phlog, phlogopite.
†pb, potassic trachybasalt; m, minette.
*Total.
†+Plateau age.
preexisting fractures cannot be discounted. Nonetheless, the pattern of changing stress orientations during the Cenozoic inferred from other parts of the southwestern United States is compatible with the Wasatch Plateau magmas invading self-made or preexisting fractures in a direction more or less perpendicular to the least principal horizontal stress. Easterly striking 24 Ma dikes (Figure 3) agree with the northerly orientation of the least horizontal stress during the Oligocene and early Miocene found by Eaton [1982], Best [1988], and Ren et al. [1989]. An 18 Ma melanephelinite dike striking N63°W suggests that the least principal horizontal stress may have rotated clockwise after emplacement of the older, 24 Ma dikes. A Miocene north-northeast orientation of the least horizontal stress has been inferred from fault-slip data along the western margin of the Colorado Plateau [Barnhard and Anderson, 1984]. Thompson et al. [1989] show 12–9 Ma dikes in northwestern Colorado (EH in Figure 1a) that strike about N10°W to N63°W. Younger, 8–7 Ma, minette dikes in the Wasatch Plateau dike swarm strike north and are consistent with the easterly least horizontal stress orientation reported for the western United States during the past 10 m.y. [Zoback et al., 1981; Eaton, 1982; Best, 1988; Ren et al., 1989] including the western margin of the Colorado Plateaus [Thompson and Zoback, 1979; Barnhard and Anderson, 1984]. A near east-west least principal horizontal stress orientation in the Wasatch Plateau during the latest Miocene is also consistent with the contemporary (less than 5 m.y.) least principal horizontal stress orientation determined from fault-slip interpretations in the eastern Basin and Range near Nephi, Utah [Smith and Lindh, 1978].

We conclude that the latest Oligocene-early Miocene (25–18 Ma) minette and melanephelinite dikes formed either (1) in a northerly oriented extensional tectonic regime or (2) in an east-west compressional regime which may have been related to continued east-directed subduction of oceanic lithosphere beneath North America. In either setting, magma would be injected more or less parallel to the easterly maximum principal horizontal stress. Emplacement of younger 8–7 Ma minette dikes occurred in an east-west extensional regime similar to that which created the familiar Basin and Range topography.

PETROLOGY

Classification of the dike rocks in the Wasatch Plateau follows the recommendations of the International Union of Geological Sciences (IUGS) [Le Maitre et al., 1989; Le Bas, 1989] and the suggestions made by Rock [1987] (see also Bergman [1987]) for lamprophyre. All analyzed samples contain normative olivine and nepheline and some contain leucite. Below we describe the petrography, major and trace element geochemistry, and Nd and Sr isotopic composition of the dike rocks. Chemical and isotopic analyses were made on freshes samples; the only alteration of magmatic minerals in analyzed samples was serpentinization of olivine.

Petrographic Distinction of Rock Types

Modal and major element compositions vary more or less continuously in the dike rocks of the Wasatch Plateau swarm, but four rock types can be discerned: minette, mica-rich minette, melanephelinite, and mica melanephelinite (Figures 4 and 5).

In the Wasatch Plateau, both types of minette have phenocrysts of phlogopite and olivine in a finer-grained, generally aphanitic matrix of K-feldspar and turbid devitrified glass, euhedral Fe-bearing diopside, phlogopite, titaniferous magnetite, apatite, rare amphibole, and possibly magmatic calcite. Mineralogically, Wasatch Plateau minettes resemble the calc-alkaline lamprophyre group [Rock, 1987]. Most minettes are deuteronically altered, presumably because of high concentrations of volatiles (H₂O + CO₂) in the magmas, to clay minerals, serpentine, carbonate, hematite, and a small amount of quartz, all surrounding residual flakes of phlogopite. Rapid, but partial degassing of volatiles from the magmas at upper crustal levels [O’Brien et al., 1988] may have caused fracturing of the host rock and subsequent incorporation of country rock fragments into the magma.

Some minettes in the Wasatch Plateau dike swarm contain unusually abundant phenocrysts of phlogopite (20–60%); Figures 3 and 5) and are designated mica-rich minette; they make up approximately one half of the swarm and all appear to be 24 Ma. Other minettes in the swarm are mineralogically and modally more like typical minette (Figures 3 and 5) and are called minette in this report; they comprise the 8–7 Ma north striking dikes in the swarm.

Phlogopite phenocrysts in both varieties of minette are euhedral and longest dimensions commonly parallel the margins of the dikes. In coarser-grained rocks, phlogopite oikocrysts enclose euhedral crystals of diopside, apatite, and titaniferous magnetite. In some samples of mica-rich minette, two generations of phlogopite are shown by the presence of phenocrysts and matrix crystals. Chemical zonation in the phlogopite phenocrysts is evident in pleochroic light brown cores and narrow pleochroic dark red-brown rims. Phlogopite grains in at least two mica-rich minette dikes have pleochroic light brown cores and thin, reversely pleochroic dark red-brown rims, probably as a result of the substitution of Fe³⁺ for Al³⁺ in tetrahedral sites [Faye and Hogarth, 1969; Smith et al., 1984; Farmer and Boettcher, 1981]. Electron microprobe analyses of this phlogopite [Tingey, 1989] show low Al concentrations (Si + Al < 4 cations per formula unit) comparable to phlogopite in lamproite [Bergman, 1987]. Core to rim Fe(Fe+Mg) ratios range from 0.095 to 0.192 in mica-rich minette but from 0.221 to 0.316 in minette. F and TiO₂ are highly concentrated in some phlogopite grains, the latter as much as 8.4 wt % in a minette.

Erosionally resistant, hard, black dike rocks containing pyroxene phenocrysts in the Wasatch Plateau swarm are melanephelinites. Their major element compositions, such as MgO concentrations (11.2–16.6%), fall within the range of melanephelinite [Le Bas, 1989]. These dikes contain (Figure 5) large (as much as 4 mm) euhedral phenocrysts of zoned, Fe-bearing diopside with partially resorbed cores and euhedral, locally serpentinized olivine (Fo₀₉₋₀₈, Fo₀₈ in two samples) in a matrix of euhedral diopside, devitrified glass, titaniferous magnetite, apatite, and possible magmatic calcite. Two varieties of melanephelinite are recognized (Figure 3). First, ordinary melanephelinites are much like those described by Le Bas [1989] but contain essential nepheline and, in addition to the phases in the matrix noted above, traces of phlogopite. The nepheline occurs in thin, dike-parallel veinslets and as small grains in the matrix. A few samples have rare residual melt ocelli composed of plagioclase and calcite and some others contain late vapor-phase zeolites. All of the melanephelinite dikes strike west northwest and one dated sample is 18 Ma. Second, 24 Ma mica melanephelinites have major element compositions like melanephelinite of Le Bas [1989], but mineralogically, they are transitional to the minettes of the dike swarm because they contain as much as 20% phlogopite as phenocrysts and in matrix (Figure 5); also, K-feldspar and analcite occur in the matrix rather than nepheline.

Chemical Composition

Figure 4 (see also Table 3) reveals the similarities and differences in major element compositions of the various types of minette and
Fig. 4. Major element versus SiO$_2$ diagrams for Wasatch Plateau dike rocks. See also Table 3.

melanephelinite. The four rock types plot in more-or-less discrete fields on silica variation diagrams. Mica-rich minette and the one analyzed minette have significantly higher concentrations of SiO$_2$ and lower Fe$_2$O$_3$, MnO, and CaO than either type of melanephelinite. Relative to typical continental basalts, all Wasatch Plateau dike rocks are strongly enriched in incompatible trace elements (Ba, Rb, Th, Sr, LREE, Zr, and Hf) as well as strongly compatible elements Cr and Ni (Table 3). Each dike type possesses a distinctive chondrite-normalized trace element pattern (Figure 6). These systematic differences in major and trace element concentrations, patterns, and isotopic ratios (Table 3) correlate with age and show that degassing of a uniform magma composition and crystallization at different water fugacities was not an important factor in their evolution. The rocks of the Wasatch Plateau dikes are not mineralogic heteromorphs of one another (compare O’Brien et al. [1988]).

Both types of Wasatch Plateau minette, although mineralogically resembling the calc-alkaline lamprophyre group of Rock [1987], are in fact alkaline and have lower SiO$_2$ and Al$_2$O$_3$ and higher TiO$_2$ and
MgO concentrations than reported means for this lamprophyre group. Chemically, therefore, these minettes are more like alkaline lamprophyres and lamproites of Rock [1987]. This kinship is supported by the low Al and high Ti contents of phlogopite in the mica-rich minettes [Bergman, 1987; Rock, 1987], but both types of minette lack exotic minerals found in lamproites, such as K-amphibole, wadeite, priderite, etc. The high MgO concentrations of the minettes (Figure 4) are similar to those of ultramafic lamprophyres [cf. Rock, 1987].

In mica-rich minettes, silica ranges from 45 to 49%, which is higher than in melanephelinites but is similar to that in the younger minette. Analyzed mica-rich minettes range from ultrapotassic (K₂O > 4%) to sodic (Na₂O > K₂O). Of all the rocks in the dike swarm, the mica-rich minettes have the lowest Ba, Sr, La, and the highest Cr concentrations, and although some overlap exists, they generally have the lowest Nb and the highest Ni, Zr, and Hf concentrations. For mica-rich WAT-12, the rare earth element (REE) pattern (Figure 7) shows a distinctive change in slope at Eu. The light REEs have lower concentrations than in the other types of minette and melanephelinite; consequently, this sample has the lowest La/Yb ratio. Chondrite-normalized trace element patterns of mica-rich minettes (Figure 6) are convex upward but marked by depletions (negative anomalies) of Nb-Ta, Sr, and Ti relative to elements of similar compatibility; normalized Ba/Rb ratios are less than 1. The major element compositions and trace element patterns of mica-rich minette are similar to those of mafic minette in the Navajo volcanic field [Alibert et al., 1986; Roden et al., 1990].

Younger 8–7 Ma minette has the highest Al₂O₃ and K₂O and the lowest Fe₂O₃, MnO, MgO, and CaO in the Wasatch Plateau dike swarm. Although SiO₂ is high, so are total alkalies (7.1%); thus the analyzed sample is silica undersaturated, with normative olivine and nepheline. Unlike the other mica-bearing rocks, TiO₂ is high and similar to melanephelinite. In the enrichment of incompatible and compatible trace element, younger minette is similar to 24 Ma
TABLE 3. Analyses of Representative Dike Rocks From the Wasatch Plateau

<table>
<thead>
<tr>
<th></th>
<th>WAT-12</th>
<th>SCO-1</th>
<th>CAN-3</th>
<th>PIN-2</th>
<th>STA-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂, wt %</td>
<td>47.4</td>
<td>45.33</td>
<td>44.2</td>
<td>49.0</td>
<td>39.8</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.82</td>
<td>1.28</td>
<td>2.00</td>
<td>2.66</td>
<td>2.76</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>9.3</td>
<td>9.14</td>
<td>11.8</td>
<td>12.0</td>
<td>9.6</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>9.82</td>
<td>9.07</td>
<td>11.21</td>
<td>9.26</td>
<td>12.70</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.14</td>
<td>0.13</td>
<td>0.18</td>
<td>0.11</td>
<td>0.19</td>
</tr>
<tr>
<td>MgO</td>
<td>16.4</td>
<td>19.04</td>
<td>12.7</td>
<td>10.1</td>
<td>16.6</td>
</tr>
<tr>
<td>CaO</td>
<td>9.32</td>
<td>9.46</td>
<td>10.93</td>
<td>8.45</td>
<td>13.70</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.14</td>
<td>0.52</td>
<td>2.52</td>
<td>1.02</td>
<td>1.77</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.41</td>
<td>4.65</td>
<td>2.95</td>
<td>6.10</td>
<td>1.20</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>1.27</td>
<td>1.39</td>
<td>1.41</td>
<td>1.27</td>
<td>1.67</td>
</tr>
<tr>
<td>LOI</td>
<td>4.76</td>
<td>4.92</td>
<td>3.31</td>
<td>2.46</td>
<td>3.10</td>
</tr>
<tr>
<td>Sc, ppm</td>
<td>23.6</td>
<td>14</td>
<td>24.7</td>
<td>17.8</td>
<td>26.2</td>
</tr>
<tr>
<td>V</td>
<td>183</td>
<td>149</td>
<td>22.7</td>
<td>187</td>
<td>170</td>
</tr>
<tr>
<td>Cr</td>
<td>1022</td>
<td>998</td>
<td>630</td>
<td>430</td>
<td>753</td>
</tr>
<tr>
<td>Co</td>
<td>61.0</td>
<td></td>
<td>57.0</td>
<td>54</td>
<td>82</td>
</tr>
<tr>
<td>Ni</td>
<td>699</td>
<td>603</td>
<td>296</td>
<td>311</td>
<td>391</td>
</tr>
<tr>
<td>Cu</td>
<td>99</td>
<td>70</td>
<td>60</td>
<td>49</td>
<td>66</td>
</tr>
<tr>
<td>Zn</td>
<td>114</td>
<td>93</td>
<td>102</td>
<td>102</td>
<td>108</td>
</tr>
<tr>
<td>Ga</td>
<td>14</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Rb</td>
<td>132</td>
<td>271</td>
<td>62</td>
<td>72</td>
<td>23</td>
</tr>
<tr>
<td>Sr</td>
<td>678</td>
<td>666</td>
<td>1551</td>
<td>2398</td>
<td>1627</td>
</tr>
<tr>
<td>Y</td>
<td>47</td>
<td>40</td>
<td>30</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td>Zr</td>
<td>682</td>
<td>441</td>
<td>363</td>
<td>303</td>
<td>278</td>
</tr>
<tr>
<td>Nb</td>
<td>26</td>
<td>10</td>
<td>36</td>
<td>39</td>
<td>83</td>
</tr>
<tr>
<td>Cs</td>
<td>3.6</td>
<td></td>
<td>0.9</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Ba</td>
<td>621</td>
<td>2076</td>
<td>3646</td>
<td>4892</td>
<td>1279</td>
</tr>
<tr>
<td>La</td>
<td>58</td>
<td>101</td>
<td>151</td>
<td>111</td>
<td>160</td>
</tr>
<tr>
<td>Ce</td>
<td>127</td>
<td></td>
<td>270</td>
<td>212</td>
<td>301</td>
</tr>
<tr>
<td>Nd</td>
<td>70</td>
<td></td>
<td>96</td>
<td>91</td>
<td>117</td>
</tr>
<tr>
<td>Sm</td>
<td>16.8</td>
<td></td>
<td>14.4</td>
<td>13.9</td>
<td>20.2</td>
</tr>
<tr>
<td>Eu</td>
<td>5.33</td>
<td></td>
<td>4.19</td>
<td>3.96</td>
<td>5.99</td>
</tr>
<tr>
<td>Tb</td>
<td>2.0</td>
<td></td>
<td>1.2</td>
<td>0.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Yb</td>
<td>2.26</td>
<td></td>
<td>2.10</td>
<td>1.29</td>
<td>1.96</td>
</tr>
<tr>
<td>Lu</td>
<td>0.28</td>
<td></td>
<td>0.27</td>
<td>0.16</td>
<td>0.24</td>
</tr>
<tr>
<td>Hf</td>
<td>19</td>
<td></td>
<td>11</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Ta</td>
<td>1.8</td>
<td></td>
<td>2.7</td>
<td>2.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Th</td>
<td>8.7</td>
<td></td>
<td>11.0</td>
<td>5.2</td>
<td>30.0</td>
</tr>
<tr>
<td>U</td>
<td>3.1</td>
<td></td>
<td>2.0</td>
<td>1.9</td>
<td>7.0</td>
</tr>
<tr>
<td>⁸⁷Sr/⁸⁶Sr</td>
<td>0.70768</td>
<td></td>
<td>0.70426</td>
<td>0.70662</td>
<td>0.70621</td>
</tr>
<tr>
<td>⁶⁹Nd/⁶⁷Nd</td>
<td>0.51244</td>
<td></td>
<td>0.51193</td>
<td>0.51182</td>
<td>0.51259</td>
</tr>
<tr>
<td>TDM (Ga)</td>
<td>1.4</td>
<td></td>
<td>1.5</td>
<td>1.6</td>
<td>0.64</td>
</tr>
</tbody>
</table>

LOI is loss on ignition at 1000°C for 4 hours. TDM is Nd model age calculated relative to depleted mantle, using ¹⁴⁴Nd/¹⁴⁴Sm = 0.51235 and ¹⁷⁷Sm/¹⁴⁴Nd = 0.225. Analyses of Sc, Co, Cs, REE, Hf, Ta, Th, and U by INAA, other elements analyzed by XRF. Major element analyses normalized to 100% on volatile-free basis. Isotope ratios by mass spectrometry [Patchett and Ruiz, 1987].

mica-rich minette; however, minette generally has higher Ba, Sr, and LREE and lower Th, Nb, Ta, Zr, Hf, Cr, and Ni concentrations (Figure 6). HREE (heavy rare earth elements, Tb, Yb, Lu) are lower in concentration in PIN-2 than in any of the other dikes (Figure 7). The trace element pattern of the minette is relatively smooth, but there are negative anomalies for Rb-Th and Nb-Ta. Minette is distinct from other mica-bearing dikes (mica-rich minette and mica melanephelinite) because it lacks Sr and Ti anomalies and because normalized Ba/Rb and K/Th ratios exceed 1. Equivalent compositions have not been reported from the southern Colorado Plateaus. Minettes with the same SiO₂ content from the Navajo volcanic field have much lower Ba/Rb ratios and are depleted in TiO₂, Al₂O₃, K₂O, and P₂O₅ [Laughlin et al., 1986; Alibert et al., 1986].

Melanephelinites of the Wasatch Plateau have less silica than the minettes, yet because of relatively low total alkalies and especially K₂O (Na₂O > K₂O) they are no more silica undersaturated. Distinctive characteristics of the melanephelinites include high concentrations of TiO₂, Fe₂O₃, and CaO and CaO/Al₂O₃ > 1. They have the lowest K₂O contents of the swarm and all are sodic with Na₂O greater than K₂O. All of these characteristics are typical of melanephelinite on a worldwide basis [Le Bas, 1989; Fitton and Dunlop, 1985]. REE patterns of melanephelinite are smooth and quite steep with normalized Ce/Yb about 50 (Figure 7). Chondrite-normalized trace element patterns are generally convex upward with deep anomalies at Rb and K (normalized Ba/Rb > 1) and with small negative Sr anomalies (Figure 6). In contrast to the minettes, melanephelinites have smoother patterns and lack negative Nb-Ta anomalies. The patterns are, however, similar to those for nepheline-rich rocks in Hopi Buttes [Alibert et al., 1986; Fitton et al., this issue] and to continental and oceanic nepheline means [Fitton et al., 1988], except for slightly lower Nb and Ta abundances in the Wasatch Plateau melanephelinites. Compared to average ocean island basalt, the melanephelinites are enriched in Ba and La. However, La/Nb and La/Ba ratios are for the most part comparable to ocean island basalt but extend into the field occupied by the minettes (Figure 8).
Mica melanephelinite of the Wasatch Plateau are transitional in major element composition between the minettes and the melanephelinites (Figure 4). All mica melanephelinites are silica undersaturated with normative olivine, nepheline, and, in most rocks, leucite. Like the melanephelinites, most but not all have Na₂O greater than K₂O. They partially overlap the high end of the SiO₂ range observed for the melanephelinites; in this overlapping interval, the micaceous variety is richer in K₂O and P₂O₅ and poorer in TiO₂ and Fe₂O₃ than ordinary melanephelinite. The high Ba/Rb ratios and REE patterns of the two types of melanephelinite are very similar, but the mica-bearing variety has a slight depletion of middle REEs (Figures 6 and 7). However, the mica melanephelinites have higher K₂O and generally lower Th, Nb, and Ta than the melanephelinites. As a result, their trace element patterns show deeper Nb-Ta, Sr, and Ti anomalies. Although quite distinct in major element composition, minettes from the Elkhead Mountains province of northeastern Colorado have trace element patterns, including Ba/Rb ratios greater than 1 and negative Sr and Ti anomalies, that are similar to those of the mica melanephelinites from the Wasatch Plateau swarm [Thompson et al., 1989].

Isotopic Composition

Although our data are meager (Table 3), the alkaline dike rocks of the Wasatch Plateau show considerable variation in Nd and Sr isotopic composition (Figure 9). However, their compositions fall near those of similar alkaline rocks found in the Cordilleran region. The analyzed melanephelinite has the most radiogenic Nd isotopic composition found in the Wasatch Plateau dikes, with a nearly
Fig. 7. Chondrite-normalized rare earth element patterns for alkaline rocks in the Wasatch Plateau dike swarm.

Fig. 8. La/Ba versus La/Nb ratios in alkaline rocks of the Wasatch Plateau compared to the field for ocean island basalts [Fitton et al., this issue]. Melanephelinites show the greatest similarity to ocean island basalt and may have an asthenospheric source. Higher La/Nb or lower La/Ba ratios of the mica melanephelinites and minettes may reflect a component derived from enriched lithospheric mantle.

Fig. 9. Nd and Sr isotopic composition of Wasatch Plateau dikes and other Cenozoic mafic rocks from in and near the Colorado Plateaus. Samples from the Wasatch Plateau are melanephelinite (N, STA-1); mica-rich minette (MR, WAT-12); mica melanephelinite (MM, CAN-3); minette (M, PIN-2). Shown for comparison are compositions of oceanic basalts [Zindler and Hart, 1986], basaltic lavas from the margins of the Colorado Plateaus (CP) [Alibert et al., 1986], minette from the Navajo volcanic field [Roden et al., 1990; Alibert et al., 1986], minette from the Elkhead Mountain province of western Colorado [Thompson et al., 1989], and potassic to ultrapotassic volcanic rocks from the Leucite Hills, Wyoming [Vollmer et al., 1984].
chondritic ratio that is only slightly lower than those found by Alibert et al. [1986] and Fitton et al. [this issue] for melanephelinites from Hopi Buttes and for ocean island basalts in general. Epsillon Sr for this sample is within the range of Hopi Buttes melanephelinites (Figure 9), but higher than almost all ocean island basalts.

All of the other dike rocks fall far away from the array defined by oceanic basalts. The Nd and Sr isotopic composition of a 24 Ma mica melanephelinite (CAN-3) contrasts strongly with the melanephelinite (Figure 9). CAN-3 falls far below the oceanic mantle array and has an extremely nonradiogenic Nd isotope ratio (epsilon Nd = 13.2), and its Sr isotope ratio is just less than that estimated for bulk Earth and within the EM I field of Zindler and Hart [1986]. CAN-3 is most similar in isotopic composition to minettes from the Elkhead Mountains province. Young minette PIN-2 has the lowest Nd isotope ratio (epsilon Nd = 15.8) of those analyzed. It is similar in this regard to the ultrapotassic rocks of the Leucite Hills [Vollmer et al., 1984], other lamproites, and Group II kimberlites [e.g., Menzies et al., 1987]. The trace element pattern and isotopic composition of mica-rich minette WAT-12 is most similar to the minettes from the Navajo volcanic field (Figure 9).

Neodymium model ages, calculated with reference to depleted mantle, fall in two groups. The mica-bearing rocks have TDM of 1.4 to 1.6 Ga and are slightly less than crystalization ages [Condie, 1986] and Nd model ages [Bennett and DePaolo, 1987] for basement rocks from the Colorado Plateau. The melanephelinite has a much younger TDM of 0.6 Ga.

PETROGENESIS

The minettes and melanephelinites of the Wasatch Plateau dike swarm formed in a continental intraplate tectonic setting after subduction of an oceanic plate had begun to cease off the continental margin. They were intruded contemporaneously during the late Tertiary in a small region, are strongly enriched in large-ion lithophile elements (LILE) compared to mid-ocean ridge basalts, and are silica undersaturated. Similar associations of contemporaneous lamprophyres and melanephelinites are found worldwide, suggesting a strong genetic link between these distinctive magma types [Bachinski and Scott, 1979; Stille et al., 1989]. In the sections that follow, we first consider whether the Wasatch Plateau alkaline rocks are primitive magmas and then speculate about the nature of their sources and their origins based on correlations of the isotopic and trace element composition of the rocks with petrography, major element composition, and age.

Primitive Magmas?

Minettes and melanephelinites have high concentrations of the strongly compatible elements Ni, Cr, and Co along with high MgO, characteristics which suggest primitive, perhaps even primary magmas [Basaltic Volcanism Study Project (BVSP) 1981]. However, the very high MgO (> 16%) and Ni (> 500 ppm) concentrations of some samples could indicate that olivine and/or phlogopite accumulated. Doubtlessly, some sorting of phenocrysts has occurred as demonstrated by the presence of zoned minette dikes, but it does not seem to be solely responsible for the high MgO and Ni. We reject the notion that mica-rich minette is purely a micaceous cumulate developed from minette or mica melanephelinite because mica-rich minette consistently has lower Ba/Rb ratios than the mica-poor rocks. Accumulation of phlogopite, with its high partition coefficient for Ba compared to Rb, would cause higher Ba/Rb ratios in the accumulative rock.

MgO-Ni relationships are consistent with the idea that most samples represent primitive magmas. Figure 10 shows possible compositions of primitive melts derived from peridotite using a range of partition coefficients for Ni. Only two samples, both mica-rich minettes, fall clearly outside this "primitive magma envelope", one below and one above. Similarly, most sample compositions fall on the mantle (ol-opx-cpx) fusion curve as modelled by Aliberte and Tomagan [1988]. The criteria used to identify primitive magmas in Figure 10 apply to magmas derived from lherzolite and in equilibrium with magnesian olivine; however, there is no guarantee that a phlogopite- or amphibole-bearing, orthopyroxene-free source would produce similar primitive melts. It is conceivable that the high MgO contents of some samples of mica-rich minette may reflect partial melting in the presence of phlogopite (compare the experimental study of Barton and Hamilton [1982]).

Perhaps the most convincing evidence for the derivation of Wasatch Plateau alkaline rocks from primitive magmas is the composition of their olivine phenocrysts. Olivine compositions in melanephelinite (F085) and mica melanephelinite (F087) are near the range (F090 to F093) expected for primitive magmas derived from a "normal" mantle [BVSP, 1981] and are also near the compositions of olivines (F085 to F090) in phlogopite-bearing mantle inclusions [Erleman et al., 1987]. Such inclusions may be more like the sources of the Wasatch Plateau magmas.

Despite their primitive character, none of the Wasatch Plateau magmas seem to have brought mantle-derived xenoliths to the present level of exposure. However, chemically and mineralogically similar minette in the Navajo volcanic field contains such xenoliths [Roden, 1981; Roden et al., 1990; Ehrenberg, 1982], suggesting that crustal contamination is not a necessary process to produce the characteristics of minette [cf. Rutter, 1987].

The isotopic compositions of the Wasatch Plateau rocks confirm that the sources for their magmas were heterogeneous and had experienced long-term enrichments of Rb compared to Sr and LREE compared to heavier REE (Figure 9). The positions of these mafic alkaline rocks off the mantle array defined by oceanic basalts could be taken to indicate significant crustal contamination of the magmas as they passed through the Proterozoic continental crust. However, we believe that crustal contamination was not significant (except perhaps in the case of the mica-rich minette WAT-12), as found by Aliberte et al. [1986] and Roden et al. [1990] for similar rocks in the southern Colorado Plateau. The high epsilon Sr value for WAT-12 and its relatively low Ce/Yb ratio place it off the array defined by apparently uncontaminated magmas from the southern Colorado Plateau (Figure 7 of Aliberte et al. [1986]). Moreover, this sample of mica-rich minette came from a dike that contains xenoliths of sedimentary material which may have radiogenic Sr. In addition, the mica-rich minettes have the lowest Sr concentrations (670–780 ppm) of the types identified here and could be most easily contaminated by crustal materials.

The high Sr concentrations (1000–2400 ppm) of the other dikes would tend to buffer their Sr isotopic compositions during assimilation of lower Sr crustal rocks. Minette breccias from the Navajo field also appear to have been contaminated by crustal materials [Aliberte et al., 1986].

Nature of the Mantle Sources

If the primitive character of the Wasatch Plateau magmas is accepted, they reveal information about the mineralogical character of their sources. As reviewed by Edgar [1987] and Green et al. [1987], it is difficult, if not impossible, to derive minette from normal dry lherzolite; rather, H2O and CO2 seem to be required and must be present in some mineral in the source rock. The experiments of Esperanca and Holloway [1987] with a minette composition slightly more felsic than those described here showed a near-lithid assemblage of olivine, diopside, and phlogopite. Accord-
tingly, we suggest that the Wasatch Plateau minettes were derived from phlogopite-bearing sources. In fact, the low Ba/Rb ratios of the mica-rich minettes are consistent with mica remaining in the mantle after partial melting. Residual apatite in the source of the mica-rich minettes may also be indicated by the relatively low LREE concentrations and high P2O5 concentrations. In the source of the young minette, apatite and phlogopite may have been consumed during melting, yielding higher concentrations of LREE and higher Ba/Rb ratios in the melt. This could explain the different trace element patterns (Figure 6) for the two types of minette without appealing to major differences in trace element concentrations in their sources. An alternative, and favored, explanation is that the minette source had an intrinsically different trace element pattern than the source of the mica-rich minette, including stronger LREE enrichment as suggested by the low Nd isotope ratio in PIN-2.

For the melanephelinites, a source dominated by clinopyroxene and amphibole is suggested by their sodic (rather than potassic) character, their low alkali abundances, and Rb/Sr ratios; experimental evidence showing melanephelinite is produced by partial melting of amphibole peridotite [Eggler, 1978], and the studies of a suite of alkaline lavas that included melanephelinite by Francis and Ludden [1990].

In recent years, several models have been employed to explain the origin and source regions for alkaline magmas like those injected in the Wasatch Plateau dike swarm. In one model, magma generation occurs by extremely small degrees of partial melting of convecting asthenosphere similar to that which gives rise to ocean island basalts. In a second model, generation of LILE-enriched magma occurs by melting larger proportions of enriched (metasomatized) lithospheric mantle. As outlined below, elements of both of these models may be applicable to the alkaline rocks of the Wasatch Plateau. Two broadly different sources are suggested by the lack of negative Nb anomalies in melanephelinites and the presence of such anomalies in the mica-bearing rocks (minettes and mica melanephelinites) (Figure 6) and by the complementary differences in isotopic compositions and Nd model ages between the two groups. The Nd and Sr isotopic composition of the melanephelinite is near the oceanic mantle array; data for the three types of Nb-deficient micaceous rocks fall far from the array and demand long-lived enrichment of incompatible elements. Long-term enrichment could be created in the mantle lithosphere under tectonically stable continental crust.

Origins of the Alkaline Rocks

We have already noted the chemical similarity of melanephelinite to ocean island basalts, including their major element compositions, relatively smooth trace element patterns (Figure 6), lack of negative Nb anomalies, and trace element ratios (Figure 8). All of these features are consistent with an asthenospheric origin of the melanephelinites. Batch partial melting calculations for melanephelinites of the Wasatch Plateau dike swarm show less than 0.1% melting of a LILE-depleted mantle source [Wood, 1979] can produce the general levels of incompatible element abundance, but some details are not matched (depletions of Rb, K, and Nb compared to Th and La); either the mineralogy of the assumed residue or the trace element pattern of the hypothetical depleted source is inappropriate. In addition, the Nd and Sr isotopic composition of the analyzed melanephelinite is slightly shifted away from the field of ocean island basalts (Figure 9). We suggest that primary magma, derived from asthenosphere having characteristics of the source of ocean island basalt, interacted with enriched mantle lithosphere to slightly modify incompatible element compositions and isotope ratios; such slightly contaminated magma might have formed the melanephelinite dikes.
Nonetheless, the similarity of melanephelinites to ocean island basalts does not conclusively demonstrate that their source was in the asthenosphere. For example, Roden et al. [1990] have identified garnet peridotite inclusions from the southern Colorado Plateaus with the REE and Nd isotopic characteristics of ocean island basalt (and melanephelinite); but mineral geothermometry shows that the peridotites resided within the lithosphere. Likewise, Hartmann and Wedepohl [1990] studied metasomatized inclusions from the lithosphere beneath the Hessian depression, Germany, which have incompatible trace element ratios (La/Nb, La/Ba, Zr/Nb) like ocean island basalt. Partial melting calculations using the high-K metasomatized peridotite of Hartmann and Wedepohl [1990] allow the proportion of melting to be as high as 3-4% for the melanephelinites of the Wasatch Plateau. If the melanephelinite source was enriched by metasomatism, the high epsilon Nd of STA-1 suggests that the enrichment is not as old or as extensive as in the source of mica-rich minette (Figure 9). Thus it is difficult to preclude a lithospheric source. Finally, we note that Roden et al. [1990] and Alibert et al. [1986] suggested that the source of Hopi Butte melanephelinite magma was in the lithospheric mantle.

On the Wasatch Plateau, mica-bearing rocks (mica-rich minette, minette, and mica melanephelinite) have incompatible compositions, trace element patterns (including negative Nb-Ta and Ti anomalies), and Proterozoic Nd model ages that preclude their direct derivation from asthenosphere; these facts are consistent with a source component from metasomatized but strongly heterogeneous lithospheric mantle. Xenoliths of metasomatized mantle containing hydrous minerals occur in minettes from the Navajo volcanic field and in alkali basalts from the Grand Canyon of northern Arizona [Menzies et al., 1987; Wilshire et al., 1988; Ehrenberg, 1982; Roden et al., 1990], but as pointed out by Roden et al. [1990], many of these inclusions show LREE depletions and are not appropriate sources chemically or isotopically for the minettes. However, generalized partial melting calculations using a metasomatized source, assumed to be the high-K peridotite of Hartmann and Wedepohl [1990], show that 3-5% melting can produce the enrichments of many incompatible trace elements found in mica-bearing rocks of the Wasatch Plateau. But depletions of Th, Nb, Ta, and Ti in these rocks (Figure 6) are not produced by melting of this enriched peridotite. Distinctive minerals (phlogopite, apatite, amphibole, carbonatite, and various titanates) may have been residual to the melting events and thus retained these elements. For example, Sr might be retained in preference to Ce and Nd if a carbonatite mineral was residual; it seems unlikely that residual clinopyroxene could fractionate Sr and Nd in this fashion. Alternatively, the magma sources may have been distinctively depleted in Th, Nb, Ta, and Ti compared to the metasomatized Hessian peridotites used in the calculations.

Negative Nb-Ta and Ti anomalies on chondrite-normalized diagrams, such as those found in the micaeous dikes, are generally considered to be subduction zone signatures [e.g., Fitton et al., 1988, this issue]. Negative anomalies may be caused by hydrous fluids or magmas with higher concentrations of K and LREE (as compared to less soluble Nb, Ta, and Ti) reacting with overlying mantle to produce magma or metasomatic rock. The fluids may be derived by dehydration of a subducting slab of oceanic lithosphere in an underlying subduction zone. As an alternative explanation, Roden et al. [1990] have suggested that Nb-Ta depletion in felsic minette from the Navajo volcanic field is the result of fractionation of a Nb-Ta mineral or Ti-rich phlogopite. We consider this to be unlikely for the rocks studied here because (1) we have not found a Nb-Ta phase in the minettes, (2) Nb is not correlated with any index of fractionation such as SiO$_2$, MgO, or Ni, (3) Nb is not correlated with TiO$_2$ abundances as it would be if controlled by fractionation of TiO$_2$-rich phlogopite, and (4) the Nb-Ta depletions are larger in the mafic minettes of the Wasatch Plateau than in the felsic minettes of the Navajo field. Thus we consider it more likely that the differences in Nb-Ta concentrations are controlled more by differences in the chemical or mineralogical composition of the source than by fractional crystallization.

Various kinds of metasomatic agents in the mantle sources are indicated by the compositions of the alkaline dikes of the Wasatch Plateau. For example, mica-rich minette is similar to Group II (micaeous) kimberlite, which is characterized by high Rb/Sr, K/Ti, and low Rb/Ba ratios (Figure 6). These features have been taken to indicate the presence of phlogopite resulting from metasomatism by hydrous fluids. The resultant high Rb/Sr ratios in mica-bearing mantle could, over time, produce the shallow trend of Navajo minette on the epsilon Sr-epsilon Nd diagram (Figure 9). In contrast, Wasatch Plateau minette and mica melanephelinite show evidence of metasomatism resulting from the introduction of small volume melts [e.g., Menzies et al., 1987]. These distinctive rocks have low epsilon Nd (indicative of the long term LREE enrichment of their sources), high Ce/Yb ratios, low Rb/Sr, and high Ba/Rb ratios compared with the mica-rich varieties. Moreover, mineralogic and elemental gradations between melanephelinite, mica melanephelinite, minette, and mica-rich minette suggest the involvement of melanephelinite magmas in the generation of the mica-bearing rocks.

We, thus, suggest that Wasatch Plateau minettes and mica melanephelinites crystallized from volatile-rich magmas which had some sort of subduction zone component. The older magma-bearing rocks and mica melanephelinite were both emplaced 24 Ma, shortly after the apparent disappearance of a subducting slab of oceanic lithosphere beneath the region [Severinghaus and Atwater, 1990]. However, metasomatizing fluids rising from a Cenozoic subduction zone and interacting with lithospheric mantle cannot explain the isotopic characteristics of the alkaline rocks discussed here. Rather, their sources appear to have been modified anciently, perhaps by enrichment processes associated with subduction when the lithosphere formed. For the minettes and mica melanephelinite, Nd model ages calculated with reference to depleted mantle (T$_{DM}$ = 1.4 to 1.6 Ga) suggest long-term LREE enrichment of their sources. These are likely to be minimum age estimates because the magmas probably had lower Sm/Nd ratios than their sources and the model ages are several hundred million years less than the age of the craton beneath the Colorado Plateaus [Bennett and DePaolo, 1987].

If the isotopic ratios of the mica-bearing dikes reflect the composition of parts of the lithospheric mantle, then it appears that the lithospheric mantle became enriched shortly after or while the overriding crust formed during the Proterozoic, presumably by subduction zone processes [Condie, 1986]. Nd and Sr isotopic compositions for minette of the Navajo volcanic field [Alibert et al., 1987; Roden et al., 1990] and Leucite Hills lamproite [Vollmer et al., 1984] also indicate that these Cenozoic rocks also originated in old, enriched, lithospheric mantle.

CONCLUSIONS

Mafic alkaline rocks in the Wasatch Plateau dike swarm were emplaced 24, 18, and 8-7 Ma. Changing dike orientations are consistent with clockwise rotation of the least principal horizontal stress from north-south 24 Ma to east-west by 8-7 Ma. The alkaline rocks are interpreted from their elemental, isotopic, and mineral compositions to have formed from primitive magmas. The generation of mica melanephelinite and both types of minette appears to have involved phlogopite-bearing mantle sources that were heterogeneous with respect to LREE enrichments, Rb/Sr ratios, and...
Applications to Britain, 206 pp., Oliver and Boyd, Edinburgh, 1951.

Eggler, D. H., The effect of CO2 upon partial melting of peridotite in the asthenosphere. Mineralogical and elemental gradations between melanephelinite and both kinds of minette are consistent with varying degrees of interaction of melanephelinite with enriched lithospheric mantle to produce the range of dike rocks. We suggest that melanephelinite magma was produced in response to foundering of the subducting Farallon plate away from the lithosphere and the consequent back flow of asthenosphere into the zone above the plate. In some dike intrusion episodes, melanephelinite magma interacted only slightly with the overlying enriched lithosphere; in other episodes, interaction of melanephelinite magma with small melts derived from the lithospheric mantle may have been more extensive, producing mica melanephelinite, minette, or mica-rich minette. In this scenario, melanephelinite provided at least the heat for, and in some instances significant mass to be contaminated by, lithospheric magma generation. Such a two-source model can account for the world wide association of melanephelinite and minette in intracratonic settings. An alternative that we cannot completely exclude is that all of the magmas were derived from partial melting of lithospheric mantle enriched by metasomatism during the Proterozoic but to significantly varying degrees. This model lacks a source of heat for melting of lithospheric mantle. Late Tertiary extension in the Colorado Plateaus province was small and unlikely to have caused significant melting by decompression. In either case, it is still unclear to us why Tertiary magmatism in the Colorado Plateaus province was episodic and of such low volumes compared to adjacent areas to the east and west.

The Wasatch Plateau dike swarm is but one of many Tertiary alkaline magmatic loci that define a diffuse north-south zone from Canada to Mexico just east of the late Mesozoic-early Tertiary compressional fold and thrust belt. Although broadly contemporaneous with subduction activity off the continental margin, and therefore conceivably a consequence of it, some magmatic centers may have been active after a subducting oceanic plate no longer underlay the locus. This possibility, plus (1) the poor temporal correlation between alkaline activity in Utah with zones of spatially related, presumably subduction-caused calc-alkaline activity to the west in the Great Basin and, especially, (2) the growing body of elemental and isotopic data indicating derivation of alkaline magmas from anciently metasomatically enriched lithospheric mantle indicate that the sources and/or processes of alkaline and calc-alkaline magmatism differed.

Acknowledgments. This research was made possible with the help of Colleen Tingey, Bart Kowallis, Paul Proctor, Bill Nash, Keith Rigby, Mark Bunnell, Greg Hunt, Keith Fenstermaker, and Ken Flick. Isotopic analyses were performed in the laboratories of J. P. Patchett, Dan Barker, Sonia Esperança, Michael Roden, and Stephen Nelson provided helpful reviews. Funding was provided by Getty Oil Company Minerals Division, Utah Geological and Mineral Survey, Utah Fuels Company, and NSF grant EAR-8618323. Logistical and other support was provided by Camp Valley Mining Company and Beaver Creek Coal Company.

REFERENCES

Anderson, E. M., The Dynamics of Faulting and Dyke Formation With
variations in space and time, *J. Geophys. Res.*, this issue.

