Provenance of Permian–Triassic Gondwana Sequence units accreted to the Banda Arc in the Timor region: Constraints from zircon U–Pb and Hf isotopes

Christopher J. Spencera,b,*, Ron A. Harrisa, Jonathan R. Majora,c

a Department of Geological Sciences, Brigham Young University, Provo, UT 84602, USA
b Department of Applied Geology, Curtin University, Perth, WA 6845, Australia
c Bureau of Economic Geology, University of Texas at Austin, Austin, TX 78713, USA

A R T I C L E I N F O

Article history:
Received 17 June 2015
Received in revised form 30 September 2015
Accepted 14 October 2015
Available online xxx

Handling Editor: A.R.A. Aitken

Keywords:
Banda arc
Timor
Detrital zircons
Gondwana
Arc-continent collision

A B S T R A C T

Analysis of zircons from Australian affinity Permian–Triassic units of the Timor region yield age distributions with large age peaks at 230–400 Ma and 1750–1900 Ma, which are similar to zircon age spectra found in rocks from NE Australia and crustal fragments now found in Tibet and SE Asia. It is likely that these terranes, which are now widely separated, were once part of the northern edge of Gondwana near what is now the northern margin of Australia. The Cimmerian Block rifted from Gondwana in the Early Permian during the initial formation of the Neo-Tethys Ocean. The zircon age spectra of the Gondwana Sequence of NE Australia and in the Timor region are most similar to the terranes of northern Tibet and Malaysia, further substantiating a similar tectonic affinity. A large 1750–1900 Ma zircon peak is also very common in other terranes in SE Asia.

Hf analysis of zircon from the Aleu Complex in Timor and Kigar Islands shows a bimodal distribution (both radiogenically enriched and depleted) in the Gondwana Sequence at ~300 Ma. The magmatic event from which these zircons were derived was likely bimodal (i.e. mafic and felsic). This is substantiated by the presence of Permian mafic and felsic rocks interlayered with the sandstone used in this study. Similar rock types and isotopic signatures are also found in Permian–Triassic igneous units throughout the Cimmerian continental block. The Permian–Triassic rocks of the Timor region fill syn-rift intra-cratonic basins that successfully rifted in the Jurassic to form the NW margin of Australia. This passive continental margin first entered the Sunda Trench in the Timor region at around 7–8 Ma causing the Permo-Triassic rocks to accrete to the edge of the Asian Plate and emerge as a series of mountainous islands in the young Banda collision zone. Eventually, the Australian continental margin will collide with the southern edge of the Asian plate and these Gondwanan terranes will remain.

© 2015 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

1. Introduction

Asia is an evolving supercontinent built mostly of continental fragments rifted from the former supercontinent of Gondwana (e.g. Metcalfe, 2013). Some of these fragments were rifted from what is now the passive margin of northern Australia. Petrographic and paleocurrent studies of the Gondwanan affinity sedimentary rocks of northern Australia indicate they were derived mostly from the north where continental fragments of Gondwana were subsequently rifted away (Bird, 1987; Bird and Cook, 1991; Zobell, 2007; Harris, 2011). Various paleogeographic reconstructions attach the Lhasa, Sibumasu (Siam–Burma–Malaysia–Sumatra), East Java and Borneo terranes to NW Australia at various times (Metcalfe, 2002; Ferrari et al., 2008; Metcalfe, 2011; Gibbons et al., 2015). This paper aims to test the veracity of these reconstructions by combining the methods of sandstone petrography and U–Pb analysis of detrital zircons to address the question of what rifted away from the NW margin of Australia.

Large sections of the strata making up the NW passive margin of Australia are accreted to the Banda Arc via Late Miocene to present arc-continent collision (i.e. Carter et al., 1976). We have analyzed petrological relations and U–Pb ages of detrital zircons from Gondwana affinity sandstones and metamorphic rocks in the Banda Arc in order to determine a provenance and age fingerprint to compare with various terranes in Asia.

2. Description of the Gondwana Sequence

Three major tectono-lithic units make up the Banda Arc collision, viz. the Banda Terrane and two sedimentary successions separated by a Late Jurassic breakup unconformity, known together as the Gondwana Sequence. The Banda Terrane consists of mostly forearc basement units of Asian affinity that form the upper plate of the collision. It occupies the highest structural level in the Banda Arc collision (Harris, 2006; Standley and Harris, 2009). Subcreted beneath the Banda Terrane is the Gondwana Sequence, which makes up the Australian passive margin.
lower plate of the arc-continent collision (Fig. 2). Pre- and syn-breakup strata below the unconformity formed during the Pennsylvanian to Jurassic while Australia was part of Gondwana and are known as the Gondwana Mega-sequence (Audley-Charles, 1968; Harris et al., 2000; Haig et al., 2008). The Australian Passive Margin Mega-sequence overlies the unconformity.

The recent subduction of the Australian passive margin beneath the Banda Terrane caused the two mega-sequences that comprise the passive margin to detach and accrete to the upper plate. The detachment zone more or less follows the thick Wai Luli Shale immediately beneath the Jurassic breakup unconformity. The passive margin mega-sequence above the unconformity detaches at deformation front to form a classic imbricate stack (Charlton et al., 1991; Harris, 1991, 2011). The underlying Gondwana mega-sequence is carried further down the subduction zone where it eventually detaches to form a duplex system under the Banda Terrane (Harris, 1991; Harris et al., 1998).

The stratigraphy and sedimentology of Gondwana mega-sequence units in the Banda Arc are described by many previous studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956). Other studies dating back to early Dutch expeditions of late 19th and early 20th centuries (Rothpletz, 1891; Wanner, 1913, 1956).

2.1. Aileu Complex

The Aileu Complex is the metamorphosed part of the Aileu-Maubisse Series. It is found in several places along the north coast of Timor as far east as Manatutu (Fig. 1). It is also exposed on the island of Kisar (Richardson and Blundell, 1996; Harris, 2006; Major et al., 2013) and likely on other outer-arc islands to the east based on lithological similarities (Kaneko et al., 2007). The Aileu Complex consists of a protolith of Permian–Triassic, and possibly Jurassic, psammites and limestone, and basal, rhyolite, tuffaceous material and gabbroic and dioritic plutons (Berry and McDougall, 1986; Prasetyadi and Harris, 1996; Harris, 2011). These units are metamorphosed into pelitic schist and gneiss, marble, phyllite and amphibolite. Metamorphic grade varies between lower greenschist to upper amphibolite facies (Berry and Grady, 1981). Some high temperature metamorphism may have occurred during the rifting event that formed the edge of the Australian continental margin. This event is overprinted by medium to high-pressure metamorphism during Late Miocene onset of collision in central Timor (Berry and McDougall, 1986; Harris, 1991; Harris et al., 2000).

2.2. Maubisse Formation

The Maubisse Formation consists of a distinct red, crinoidal limestone, shale and volcanic rocks that were deposited mostly during the Permian with ages ranging from latest Pennsylvanian to Triassic, and represents the oldest rocks exposed in the Banda Orogen (de Roever, 1940; Audley-Charles, 1968; Davydov et al., 2013). Pillow lavas found within the Maubisse Formation have geochemical signatures of within-plate and ocean-ridge basalt, which is interpreted as representing the onset of rifting (Berry and Jenner, 1982). Clastic sedimentary units found in the Maubisse Formation show fining in grain size toward the south (Carter et al., 1976). Rocks similar to the Maubisse Formation are documented on the Sahul Shoals of the undeformed Australian continental margin (Grady and Berry, 1977).
2.3. Atahoc Formation

The Atahoc Formation is most likely transitional with the Maubisse Formation and is Permian in age. This formation is mainly shale with some fine-grained sandstone and volcanic rocks. The basal contact has not been found and the upper contact is amygdaloidal basalt (Sawyer et al., 1993).

2.4. Cribas Formation

The Permian–Triassic? Cribas Formation is dominated by organic shale in the lower section and inter-bedded to massive sandstone units in the upper part. This sandstone is interpreted as being part of a submarine fan complex (Hunter, 1993) deposited on a shallow shelf (Bird, 1987). Another distinguishing characteristic is the presence of ironstone nodules indicative of anoxic conditions (Charlton et al., 2002).

2.5. Niof Formation

The Triassic Niof Formation is recognized in West Timor and may comprise the upper part of the Cribas Formation in East Timor. It consists of thin, inter-bedded claystone, brown, gray and black shale, and sandstone. Bird and Cook (1991) interpreted the deposition of the Niof as turbidites in shallow to deep water. The upper portion of the Niof is interbedded with the Aitutu formation (Sawyer et al., 1993).

2.6. Aitutu Formation

The Triassic Aitutu Formation is the most distinctive unit of the Gondwana Sequence. It is a rhythmically bedded white to pink limestone with thin inter-beds of dark gray shale. The Aitutu Formation was deposited on an open marine outer shelf (Sawyer et al., 1993). It is the most lithologically distinct unit of the Kekneno Series and is used as a marker unit for structural reconstructions (Harris, 2011).

Fig. 2. Stratigraphic column of the Gondwana Sequence (after Zobell, 2007).

Table 1: Lithology, Key Features, and Samples

<table>
<thead>
<tr>
<th>Age</th>
<th>Ma</th>
<th>Lithology</th>
<th>Key Features</th>
<th>Thickness (km)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Siltstone and shale passing to</td>
<td>Mostly grey and red Mudstone and shale with Fe-nodules local</td>
<td>0.8-1.2</td>
<td>SV-9</td>
</tr>
<tr>
<td>K</td>
<td>144</td>
<td>clean glauconitic sandstone and</td>
<td></td>
<td></td>
<td>SV-164</td>
</tr>
<tr>
<td></td>
<td>159</td>
<td>siltstone</td>
<td></td>
<td></td>
<td>SV-28C</td>
</tr>
<tr>
<td>Jurassic</td>
<td>180</td>
<td>Waileli Fm.</td>
<td></td>
<td></td>
<td>SV-155A</td>
</tr>
<tr>
<td></td>
<td>206</td>
<td>Breakup Unconformity</td>
<td></td>
<td></td>
<td>EZ-151</td>
</tr>
<tr>
<td></td>
<td>227</td>
<td>Babulu Fm. - Turbitic sandstone</td>
<td>Babulu Fm. - Turbitic sandstone with interbedded shale some sandstone</td>
<td>0.6</td>
<td>Aileu Complex:</td>
</tr>
<tr>
<td></td>
<td>242</td>
<td>with some sandstone units are</td>
<td>some sandstone units are massive</td>
<td></td>
<td>09HS21-4</td>
</tr>
<tr>
<td></td>
<td>248</td>
<td>Aiteu Fm. - Interbedded hard,</td>
<td>Aitutu Fm. - Interbedded hard, white calcilutites and calcareous dark</td>
<td>1.0</td>
<td>TL23b</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>white calcilutites and calcareous</td>
<td>white calcilutites and calcareous dark shales and local chert</td>
<td></td>
<td>KIS05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dark shales and local chert</td>
<td></td>
<td></td>
<td>MT48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aileu-Maubisse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cribas Fm. - Shale and Siltstone</td>
<td>Cribas Fm. - Shale and Siltstone with some lavas</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>with some lavas</td>
<td>Atahoc Fm. - Black Shale and lavas</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maubisse Fm. - Red fossiliferous</td>
<td>Maubisse Fm. - Red fossiliferous limestone, red shale and</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>limestone</td>
<td>amygdaloidal pillow basalt and tuffs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please cite this article as: Spencer, C.J., et al., Provenance of Permian–Triassic Gondwana Sequence units accreted to the Banda Arc in the Timor region: Constraints from zircon U–Pb and Hf isotopes, Gondwana Research (2015), http://dx.doi.org/10.1016/j.gr.2015.10.012.
2.7. Babulu Formation

The Triassic Babulu Formation is only recognized in central Timor (Gianni, 1971; Bird and Cook, 1991) and Savu (Vorkink, 2004), and may comprise the base of the Wai Luli Formation in East Timor. The Babulu Formation consists of sandstone, shale and silts with some massive sandstone beds. Deposition of this unit most likely occurred in a proximal near shore to shelf break (Sawyer et al., 1993) through turbidity currents from a prograding delta (Bird and Cook, 1991).

2.8. Wai Luli Formation

The Late Triassic to Jurassic Wai Luli Formation is a thick succession of mostly smectite-rich mudstone (Harris et al., 1998) with some well-bedded marl, calcilutite, micaceous shale and quartz arenite. Toward the top of the formation are conglomerate and red shale units (Audley-Charles, 1968). Ironstones are very common and form lag deposits on the surface. In the Banda collision zone the thick, mechanically weak Wai Luli mudstone serves as a major decollement for imbrication of the overlying Australian Passive Margin Sequence; and as a roof thrust for structural duplexes of the Gondwana Sequence (Harris, 1991). It also is the source of much of the mélangé matrix found along the suture zone between accreted Australian continental material and structurally overlying Asian affinity arc terranes (Harris et al., 1998).

3. Methods

The source regions for Gondwana Sequence sandstones were also investigated by petrographic studies of grain types and textures, and U-Pb age analyses of detrital zircon grains. The petrographic analysis (reported in Zobell, 2007) includes 16 samples of Triassic Gondwana Sequence sandstone collected from Savu, West Timor and East Timor.

U-Pb zircon age and Hf analyses were conducted on 5 sandstone and 4 metamorphic rock samples from Savu, Timor and Kisar (Fig. 2). These samples were crushed using a jaw crusher and the <500 μm size fraction was magnetically separated using the Carpco and Frantz...
magnetic separators. Heavy minerals were separated using wisely table and/or tetraboroethelene. Zircon grains were then handpicked for analysis. Cathode luminescence and backscatter images were acquired using a Hitachi 3400N SEM/Catan Chroma CL system and a Cameca SX-50 electron microprobe, respectively.

In situ U–Pb isotope analyses for individual grains were performed using a Nu Plasma HR MC-ICPMS coupled to a New Wave 193 nm ArF and a Photon Machines G3 193 nm ArF laser ablation system at the University of Arizona with ablation done in a He carrier gas using a 40 μm diameter spot size. Laser fluence of ~4 J/cm² at 8 Hz for 30 s of integration. Detailed U–Pb analytical procedures are described by Gehrels et al. (2008). Samples were analyzed in sets of 9 to 12 analyses, which include 5 to 8 unknown spots, bracketing beginning and end by a pair of analyses of an in house Sri Lanka zircon standard (Gehrels et al., 2008). The R33 zircon standard was also analyzed at the beginning and end of each sample set as an independent control on reproducibility and instrument stability. Concordance is defined for ages above 700 Ma using the ratio of $^{206}\text{Pb}/^{238}\text{U}$ and $^{207}\text{Pb}/^{206}\text{Pb}$ ages, and $^{206}\text{Pb}/^{235}\text{U}$ and $^{207}\text{Pb}/^{235}\text{U}$ ages are used for those younger than 700 Ma. The accepted ages were selected from a 95% concordant subset, wherein the $^{206}\text{Pb}/^{238}\text{U}$ and $^{207}\text{Pb}/^{206}\text{Pb}$ ages are used for zircons younger and older than 700 Ma, respectively; this age was chosen because there is a natural gap in the ages of the zircons in these samples. Visualization of U–Pb

![Figure 4](image-url)

Fig. 4. Column a) photomicrographs in cross polarized light showing sub-angular to sub-rounded sandstone textures of representative Triassic Gondwana sequence sandstone from East and West Timor and Savu. b) Photomicrographs in cross polarized light of unaltered twinned feldspar grains (circled). c) Photomicrographs in cross polarized light of fresh micas. d) QFL diagram of Williams et al. (1982) for classification of sandstone samples from the Triassic Gondwana Sequence. e) QFL sedimentary provenance based on Dickinson et al. (1983). Photomicrographs and point counting data are from Zobell (2007).
concordia and zircon ages is achieved using Isoplot 4.15 (Ludwig, 2003) and densityplotter (Vermeesch, 2012). GPS locations of samples are presented in Table 1.

Hf isotope analyses were performed with a Nu Plasma HR MC-ICPMS coupled to a Photon Machines G3 193 nm ArF laser ablation system. Instrument settings were established first by analysis of 10 ppb solutions of JMC475 and a Spex Hf solution, and then by analysis of 10 ppb solutions containing Spex Hf, Yb, and Lu. The mixtures range in concentration of Yb and Lu, with \(^{176}(\text{Yb} + \text{Lu})\) up to 70% of the \(^{176}\text{Hf}\). When all solutions yield an accurate \(^{176}\text{Hf}/^{177}\text{Hf}\) ratio, instrument settings are optimized for laser ablation analyses and seven different standard zircons (Mud Tank, 91500, Temora, R33, FC52, Plesovic, and Sri Lanka) are analyzed. These standards are included with unknowns on the same epoxy mounts. Laser ablation analyses were conducted with a laser beam diameter of 50 μm, with ablation pits located on top of the U–Pb analysis pits or on an adjacent spot of similar zonation. CL images were used to ensure that the ablation pits do not overlap multiple age domains or inclusions (Fig. 3). Each acquisition consisted of one 40-second integration on backgrounds (on peaks with no laser firing) followed by 60 one-second integrations with the laser firing. Using a typical laser fluence of ~5 J/cm² and pulse rate of 7 Hz. Sets of each standard was analyzed once for every ~15 unknowns.

Isotope fractionation was accounted for using the method of Woodhead et al. (2004): \(\beta_{\text{Hf}}\) is determined from the measured \(^{179}\text{Hf}/^{177}\text{Hf}\); \(\beta_{\text{Yb}}\) is determined from the measured \(^{173}\text{Yb}/^{171}\text{Yb}\) (except for very low Yb signals); \(\beta_{\text{Lu}}\) is assumed to be the same as \(\beta_{\text{Yb}}\); and an exponential formula is used for fractionation correction. Yb and Lu interferences were corrected by measurement of \(^{176}\text{Yb}/^{177}\text{Yb}\) and \(^{176}\text{Lu}/^{175}\text{Lu}\) (respectively), as advocated by Woodhead et al. (2004). Critical isotope ratios are \(^{173}\text{Hf}/^{177}\text{Hf} = 0.73250\) (Patchett and Tatsumoto, 1980); \(^{173}\text{Yb}/^{177}\text{Yb} = 1.132338\) (Vervoort et al. 2004); \(^{173}\text{Yb}^{177}\text{Yb} = 0.901691\) (Vervoort et al., 2004; Amelin and Davis, 2005); \(^{176}\text{Lu}/^{175}\text{Lu} = 0.02653\) (Patchett, 1983). All corrections are done line-by-line. For very low Yb signals, \(\beta_{\text{Hf}}\) is used for fractionation of Yb isotopes. The corrected \(^{176}\text{Hf}/^{177}\text{Hf}\) values are filtered for outliers (2-sigma filter), and the average and standard error are calculated from the resulting ~58 integrations. There is no capability to use only a portion of the acquired data.

Please cite this article as: Spencer, C.J., et al., Provenance of Permian–Triassic Gondwana Sequence units accreted to the Banda Arc in the Timor region: Constraints from zircon U–Pb and Hf isotopes, Gondwana Research (2015), http://dx.doi.org/10.1016/j.gr.2015.10.012
The 176Hf/177Hf at time of crystallization is calculated from measurement of present-day 176Hf/177Hf and 176Lu/177Hf, using the decay constant of 176Lu ($\lambda = 1.867 \times 10^{-11}$) from Scherer et al. (2001) and Söderlund et al. (2004). The uncertainty propagation of the epsilon notation also includes the uncertainty of the 207Pb/206Pb crystallization age, as it is time integrated. Although this may be an over propagation of uncertainty, we prefer this conservative approach for the epsilon notation when defining specific fields of similar εHf compositions. Uncertainties that incorporate the crystallization age uncertainty are on average 50% (1σ = 20%) larger than uncertainties that do not consider the crystallization age uncertainty.

4. Results

4.1. Petrography

Point count analysis of Gondwana Sequence sandstones from Savu and West and East Timor (initially reported by Zobell, 2007) indicates that they are quartz wackes to lithic wackes (Fig. 4a) on the classification diagram of Williams et al. (1982). On discrimination diagrams of Dickinson et al. (1983) the sandstones plot as recycled orogen provenance (Fig. 4b). In terms of texturally maturity the sandstones we analyzed are immature, and are characterized by large, sub-angular to sub-rounded framework grains (Fig. 4c). Immaturity is also indicated by significant amounts of unaltered twinned feldspar (Fig. 4d), fresh mica (Fig. 4e), lithic fragments, and high percentages of matrix. These data preclude a far-traveled source for most of the detrital zircons.

4.2. Zircon U–Pb analysis

Zircons were separated in 5 sandstone and 4 metamorphic rock samples of the Gondwana Sequence in the Timor region. These zircon grains provide the first constraints for depositional provenance and maximum age of deposition for various sections of the Gondwana Sequence (Table 1). Four of these samples are from Triassic units exposed on the island of Savu (Indonesia), one is from Triassic sandstone in East Timor and the other four are from the Aileu Complex in East Timor and Kisar Island (see Fig. 2). Most of the grains are amber to clear or pink to mauve in color with variable amounts of abrasion and rounding. Proterozoic zircons vary in color, but Paleozoic zircons are only amber to clear. Both abraded and pristine zircons are present, although there is no apparent relationship between abrasion and age. Zircons from nine samples are variably concordant (Figs. 5 and 6) and those that are $<5\%$ discordant cluster into two main populations at ~300 Ma and

![Kernel density estimation plots of detrital zircon ages from each sample. Only ages that $<5\%$ discordant are used. Plot is constructed using densityplotter (Vermeesch, 2012).](image-url)
~1875 Ma (Fig. 7). Several other small peaks are found in some grains between these two age groups. The peak at ~300 Ma includes a spread of discordant ages from mid-Carboniferous to Jurassic (~330 to 150 Ma).

Sample TL23b was collected from a leucosome pod within a migmatitic unit in the Aileu Complex. Zircons within this leucosome (17/19 analyses) give a weighted average of 300.8 ± 3.3 Ma (MSWD = 1.5) (Fig. 6). This age implies that there was partial melting associated with the rifting episode in this region, although there is no evidence of partial melting during the Miocene collision of Australia (see also Berry and Grady, 1981).

Two amphibolite samples (TL89, TL88b) from the Aileu Complex were analyzed using both 40 μm and 50 μm diameter spots. Both sets of data reveal a suite of ages between ~300 Ma and ~7 Ma that lie along a poorly defined discordia. The weighted averages of oldest clusters of ages whose 206Pb/238U and 207Pb/235U uncertainties overlap with the concordia are 266 ± 4 (n = 5; MSWD = 1.7) and 256 ± 3 (n = 4; MSWD = 0.33) (206Pb/238U age) in sample TL88b and 269 ± 4 and 244 ± 13 (n = 3; MSWD = 2.5) in sample TL89 (Fig. 8).

4.3. Hf analysis

Hf isotopic analyses of three detrital zircon samples from Kisar (KIS05 and MT4891) and Timor (09-HS21-4) have initial εHf values of 11 to −21 (Fig. 9). The pre-400 Ma zircons have εHf values of 5 to −10 whereas post-400 Ma zircons have only subchondritic εHf values.

Very young zircons (~7 Ma) from amphibolite samples (TL88b, TL89) have initial εHf values of 4.2 to −2.3 although this is likely a

![Fig. 8](image)

![Fig. 9](image)
maximum estimate given the potential for lead loss in the ages used to calculate the initial \(\varepsilon_{\text{Hf}} \). Hf isotopic analyses of zircon grains from the Aileu Complex migmatite (sample TL23b) have initial \(\varepsilon_{\text{Hf}} \) values of 11 to 16.

5. Discussion

5.1. Provenance of the Gondwana Sequence

Samples of the Gondwana Sequence on the islands of Savu, Timor, and Kisar have dominant zircon U–Pb age peaks at ~300 and ~1875 Ma with minor Neoproterozoic to Archean subpopulations (Fig. 7). The ~1875 Ma population was likely derived from the North Australian Craton within the Kimberly Basin, and Halls Creek and Pine Creek orogens (Tyler et al., 2005; Downes et al., 2007; Worden et al., 2008; Lewis and Sircombe, 2013). Additionally, the few pre-2.4 Ga detrital zircons were also likely derived from the North Australian Craton (Downes et al., 2007; Cawood and Korsch, 2008). Potential sources for the few Meso- to Neoproterozoic detrital zircons have been identified within the Musgrave Province, Albany-Fraser Orogen, and Pinjarra Orogen of central and western Australia. The presence of zircons from Western Australia was likely transported along the west and north coast prior to convergence with the Pacific Plate (Lewis and Sircombe, 2013). However, it should be noted that the proportions of Meso- and Paleo-Proterozoic zircons seen along coastal Western Australia and the northwest Australian Shelf do not match that of the samples from Savu, Timor, and Kisar. The mismatch in zircon age populations might reflect a different provenance than proposed or idiosyncrasies that would be resolved with a greater number of analyses. It should be further noted, that despite the inclusion of potentially far traveled detrital

![Kernel density estimation (solid line) plots of composite detrital zircon age spectra from potential source regions. Data compiled from: van Wyck and Williams, 2002; Veevers et al., 2005; Zobell, 2007; Korsch et al., 2009; Sevastjanova et al., 2011; Gehrels et al., 2011; Ely et al., 2013; Kwon et al., 2014; this study. Plot is constructed using densityplotter (Vermeesch, 2012).](image-url)
zircon populations, the presence of sub-angular grain fragments along with pristine mica flecks indicate that any far-traveled detrital zircon populations were reworked along a rift shoulder and deposited in a proximal basin.

Paleoproterozoic zircon grains, with minor modes at 1.8 to 1.9 Ga, are found in nearly every sample. Smaller population of Neo- and Mesoproterozoic are also present and three of the samples (SV-9, SV28C, 09HS21-4) also contain minor Archean (~2.5 Ga) grains. The early Permian maximum depositional age of the Aileu Formation inferred by the youngest detrital zircon age peak (~300 Ma) is consistent with that proposed by Brunschweller (1978), who reported Permian ammonite fossils in phyllic rocks.

Zircons in amphibolite samples TL88b and TL89 show incomplete lead loss from ~260 Ma to ~7 Ma (Fig. 8). Based upon the mafic nature of these samples and the incomplete replacement of the zircon, we postulate the cores of these grains were initially baddeleyite hosted in gabbro, which was replaced by zircon during ~7 Ma collision-related metamorphism and the influx of Si-rich fluids. Although the zircons also have elevated U/Th ratios (3.1 average) recent studies imply that the U/Th ratio of recrystallized zircon primarily reflects the composition of the fluids responsible for driving the recrystallization (Harley et al., 2007 and references therein). Alternatively, these Permian-age cores are simply heavily altered zircon with a pristine oscillatory zoned zircon rims. It is likely the mafic protolith for the amphibolite is a gabbro as argued from faint primary igneous textures. We interpret this unit as having been emplaced along the shoulder of a rift resulting from the Permian separation of the Cimmerian block from Gondwana.

HF isotopes in the detrital zircon samples display variable radiogenic enrichment with average Paleoproterozoic to Neoarchean depleted mantle model ages (Fig. 9). An exception to this is seen in the apparent bimodal distribution of εHf values in the ~300 Ma dominant age peak. The end members of this bimodal distribution lie at the +16 and –22, which correspond to the depleted mantle and a depleted mantle model age of ~2600 Ma, respectively. This unique distribution implies that these zircons were derived from a bimodal magmatic suite, which likely formed during rifting.

Evidence for this bimodal magmatic event is seen in the Gondwana Sequence where minor amounts of rhylolite and granite are accompanied by larger volumes of alkali basalt (Audley-Charles, 1968; Wopfner and Jin, 2009). These compositions typify continental rifting events (McKee, 1970). Furthermore, the ~260 Ma upper intercept age of the metagabbro samples in this study is similar to the 255 ± 39 Maapatite fission track age of Maubisse tuff (Harris et al., 2000) and 270 ± 3 Ma zircon U–Pb age of Maubisse Trachyandesite (Kwon et al., 2014) that may represent the same suite of bimodal volcanic rocks associated with the rifting of the Cimmerian block.

A comparison of the detrital zircon age spectra from the Gondwana Sequence of Savu, Timor, and Kisor with detrital zircon age spectra from regions in Australia and Asia provide important context for potential localities from which zircons may have been derived (Fig. 10). Importantly, the sedimentary basins of the NW Australian Shelf are the most proximal to the Banda Arc and yet show very different age spectra implying significantly different provenance (Lewis and Sircombe, 2013). In the Timor, the Songpan-Ganzi Terrane shows a strong 1850 Ma population similar to that of the Gondwana Sequence, but lacks the strong 300–370 Ma age peak (Gehrels et al., 2011). Similarly, detrital zircons from the Malay Peninsula have a dominant age peak younger than that of the Gondwana Sequence (Sevastjanova et al., 2011). The 300–370 Ma age population seen in the Gondwana Sequence is most similar to the rocks of the New England Orogen in NE Australia and New Guinea (van Wyck and Williams, 2002; Korsch et al., 2009); however Paleoproterozoic zircon ages are conspicuously absent from these regions and appear to have an Asian affinity relating to Sibumasu (see Wang et al., 2014; Gardiner et al., 2015).

Our story of the Gondwana Sequence comes full circle when the final remnants of the Tethys Ocean close and the Gondwana Sequence is both subducted beneath and accreted to the Banda Arc (Harris et al., 2000; Harris, 2006, 2011). Zircons from the meta-gabbros in this study have imprecisely constrained the metamorphism associated with this event at ~7 Ma (Fig. 10).

6. Conclusions

From the data presented in this study, we find that:

1. The Permian–Triassic Gondwana Sequence was deposited in intracratonic basins of Gondwana during the early breakup stage of Australian passive continental margin development.
2. These sediments, with the accompanying bimodal volcanism, represent proximal rift shoulder deposits that were lain down shortly after the initiation of Tethys Ocean rifting in the early Permian era and are now present in exhumed thrust sheets accreted to the Banda Arc complex.
3. Sandstone of the Gondwana Sequence is mostly immature and was derived predominantly from rocks to the north of the Australia that may correlate with fragments of the Cimmerian Block found in Tibet and SE Asia.
4. Zircons in meta-gabbro provide age estimates for both the rifting of Cimmeria from Gondwana in the grain cores (~300 Ma) as well as the collision of the Banda Arc with Australia (~7 Ma).
5. εHf of detrital zircons provides evidence for bimodal rift-related magmatism with one cluster of data near the depleted mantle and another with Neoarchean depleted mantle model ages.

Acknowledgments

This project was funded by the US National Science Foundation (NSF EAR-0337221 to R.H.), the College of Physical and Mathematical Sciences at Brigham Young University, and a BYU Graduate Research Fellowship (to J.M.). Michael Vorkink, and Elizabeth (Zobell) Ruiz provided some samples and analyses for this paper from their MSc Thesis research in the Banda Arc. Gratitude is also expressed to George Gehrels, Mark Pecha, and Nicky Giesler who facilitated the analytical work at the University of Arizona Laserson Chrom lab (NSF EAR-0929777 and NSF EAR-0443387). We appreciate the help of Carl Holand and Josh Flores with the analytical work.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.gr.2015.10.012.

References

Sevastjanova, I., Clements, B., Hall, R., Belousova, E.A., Grif
patchett, P.J., 1983. Importance of the U–Hf isotope system in studies of planetary chro

